Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

ДИАГОНАЛЬНОЕ ДОКАЗАТЕЛЬСТВО

Рассуждения Кантора, которые лежат в основе доказательства счетности множества десятичных дробей (то есть ), останутся в истории как доказательство его гениальности. Они оригинальны, но в то же время понятны. Это доказательство приобрело такую известность, что получило собственное название: диагональный метод, метод диагонализации, или диагональное доказательство. Посмотрим, почему это доказательство называется «диагональным».

Мы выполним действия, которые в математике именуются «сведением к абсурду», когда некая гипотеза предполагается истинной, а затем показывается, что из нее вытекает абсурдное заключение. Это означает, что исходная гипотеза ложна. Предположим (ниже мы докажем ложность этого утверждения), что множество десятичных дробей (т. е. вещественных чисел) является счетным. Будем говорить о счетности не всего множества , а лишь десятичных дробей, лежащих на интервале (0; 1), то есть удовлетворяющих условию 0 < х < 1, - лишь малой части . Предположим, что десятичные дроби пронумерованы и перечислены друг под другом, не обязательно по порядку, так, как показано ниже:

В этом списке должны фигурировать все десятичные дроби, заключенные в промежутке между 0 и 1, так, чтобы нельзя было записать никакую десятичную дробь л, которая бы не содержалась в этом списке. Кантор, основываясь на этом утверждении, создал новую десятичную дробь D

D = 0, d1 d2 d3 d4 d5… dn…,

которой не было в списке. Для каждого n он определил dn, отличное от того, которое находится в строке n и столбце n.

d отличается от десятичной дроби, которая соответствует числу 1? Да, поскольку d отличается от этой дроби в первом знаке после запятой.

d отличается от десятичной дроби, которая соответствует следующему числу в списке? Да, поскольку d отличается от второй дроби во втором знаке после запятой.

d отличается от десятичной дроби, которая соответствует третьему числу в списке? Да, поскольку d отличается от третьей дроби во третьем знаке после запятой.

Это же верно и для четвертой, пятой и n-й дробей:

dn не равно rn

D отличается от всех десятичных дробей в списке, следовательно, оно не содержится в этом списке. Но разве мы не говорили, что в этом списке содержатся все десятичные дроби? Имеется противоречие с исходным утверждением, которое гласит, что все десятичные дроби пронумерованы и перечислены в списке. В действительности это не так. Это доказывает, что множество всех десятичных дробей не является счетным.

|| > ||

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги