• по повышению вероятностей безотказной работы элементов, включенных в цепочки развития аварии (P
• по снижению последствий аварий (колонка КОС на рис. 5.7). При анализе безопасности с использованием методологии
дерева событий можно учесть действия персонала (ошибки и корректирующие действия) путем включения их в соответствующие цепочки. Кроме того, при построении цепочек можно учесть наступление различных внешних событий, влияющих на развитие аварийного процесса (например отключение воды при пожаре, обесточение).
Для упрощения анализа безопасности целесообразно использовать методологию FMECA (Failure mode Effects and Criticality Analysis) в табличной форме, т. е. анализ видов, последствий и критичности отказов. Под критичностью отказа здесь понимается совокупность признаков, характеризующих последствия отказа (например по уровню прямых и косвенных потерь, трудоемкости восстановления работоспособного состояния и т. п.) оборудования. Применение методологии FMECA в табличной форме регламентируется международным стандартом МЭК 812, национальными стандартами ряда развитых стран (США, Японии, Германии), фирменными стандартами (Форд, Фольксваген, Тоёта и др.).
Документация, относящаяся к FMECA и содержащая, например, перечни критических отказов и критических технологических процессов, является хорошим индикатором наличия элементов системы качества, обеспечивающих безопасность.
Задача лица, проводящего проверку аспектов обеспечения безопасности, оценить полноту анализа видов, последствий и критичности отказов оборудования (если методология БМЕСА использовалась на предприятии). В противном случае эксперт-аудитор имеет возможность сам провести анализ критичности оборудования или технологических процессов (операций), воспользовавшись БМЕСА-анализом на основе специально разработанных таблиц.
В общем случае целесообразно применять три таблицы. Первая содержит балльные оценки частоты отказов оборудования (нарушений технологического процесса); вторая – балльные оценки возможности выявления (диагностирования) отказа или нарушения; третья – балльные оценки последствий отказа. Пример таких шкал оценок приведен в табл. 5.9.
Таблица 5.9
Критичность i-го отказа (нарушения) вычисляется по формуле:
Сi
= B1i־B2i־B3i, (5.19)где B1i
, B2i, B3i – балл, выставленный экспертом по факторам «частота отказа», «вероятность выявления отказа», «последствие отказа» соответственно.Если значение q превышает некоторый критический уровень Скр (например, Скр = 125), то такой отказ или нарушение технологического процесса признаются критически (с точки зрения безопасности).
Составив перечень критических нарушений, эксперт имеет возможность провести целенаправленную проверку мероприятий, препятствующих нарушениям (отказам).
Во многих случаях полезно строить диаграммы Парето в аспекте рисков различных нарушений, вычисленных по формуле (5.18), или критичностей, вычисленных по формуле (5.19). Применение диаграммы Парето в этой ситуации дает возможность выделить наиболее значимые (критические) нарушения, для которых оценивается система мероприятий, блокирующих их.
Контрольные вопросы
1. Поясните цель использования статистических методов на предприятии.
2. Охарактеризуйте область использования статистических методов.
3. Какие статистические методы рекомендуют использовать стандарты ИСО серии 9000?
4. Перечислите основные этапы построения диаграммы «причины – результат».
5. Приведите пример использования диаграммы «причины – результат».
6. В чем состоит цель построения диаграммы Парето?
7. Какие задачи позволяет решить корреляционный анализ?
8. Для чего необходима оценка точности и стабильности производственных процессов?
9. Как определить достаточность мероприятий по безопасности? 10. Что такое критичность отказа?
Библиографический список
1. Шиндовский Э., Щюрц О. Статистические методы управления качеством. Контрольные карты и планы контроля / Пер. с нем. – М.: Мир, 1976.
2. Куме X. Статистические методы повышения качества / Пер. с англ. – М.: Финансы и статистика, 1990.
3. Лапидус В. А. О концепции развития, внедрения и стандартизации статистических методов управления качеством продукции в СССР // Надежность и контроль качества. 1991. № 2, 4, 6.
4. Кейн В. Э. Индексы воспроизводимости процессов // Курс на качество. – 1993.
5. Аронов И.З., Александровская Л.Н. Прудникова Е.А. Анализ надежности при сертификации систем качества // Приборы и системы управления. – 1992. № 7.
6. Бирюкова З. Ф., Букринский А. М., Грозовский Г. И. и др. Применение вероятностного анализа безопасности к оценке текущего уровня безопасности атомной станции.
7. Proceeding of an International Symposium on the Use of Probabilistic Safety Assessment for Operational Safety. Spa 91, IAEA, 1991.
8. Швыряев Ю. В. Вероятностный анализ безопасности атомных станций. Методика выполнения. – М.: ИАЭ им. И. В. Курчатова, 1992.
9. Шпер В. Л. Семь простых методов контроля качества / Надежность и контроль качества. – 1992. № 19.