Таким образом, из пяти ящиков, случайно отобранных из партии объемом 100 ящиков, необходимо методом случайного отбора взять 28 стержней (примерно 6 шт. из каждого ящика) на испытания.
Вычислим предельные объемы выборки. Так как N = 20 000, R = = 100, то
Следовательно, границы объема выборки, исходя из условий примера, составляют 25—159 единиц.
Пример 3. Учитывая условия примера 2, определить объем выборки для испытаний стержней, если вся партия продукции распределена на четыре однородные группы (слоя):
группа 1 – ящики с 1-го по 20-й (R1
= 20);группа 2 – ящики с 21-го по 60-й (R2
= 40);группа 3 – ящики с 61-го по 80-й (R3
= 20);группа 4 – ящики с 81-го по 100-й (R4
= 20).Так как партия продукции неоднородна (расслоена), то формирование выборки необходимо проводить методом расслоенного отбора с учетом наличия четырех слоев. Число упаковочных единиц (ящиков) и общий объем выборки определены в примере 2 (r = 5; n = 28).
Определим число упаковочных единиц, которые необходимо отобрать из первого слоя:
Таким образом, из первого, третьего и четвертого слоев необходимо отобрать по одному ящику, из второго слоя – два ящика.
Определим объем подвыборки, которую необходимо сформировать из продукции первой группы:
Этот факт обусловлен округлением при вычислении значений n
Рассмотренный пример показывает, что расслоение партии приводит к более сложной процедуре организации формирования выборки при одинаковых требованиях к точности и достоверности.
При сертификации по схеме № 7 (табл. 5.1) часто используется метод параметрического контроля. При параметрическом контроле, в частности надежности, у каждого проверяемого изделия (выборки изделий) определяется один количественный параметр х, который в партии изделий имеет определенное (нормальное, Вейбулла, гамма и т. д.) распределение.
В выборке объема n определяются значения параметра х
Оценка партии производится по величине х
Оценочный норматив (приемочное число) хсрс
для среднего значения хср контролируемого параметра назначается с учетом следующих условий:• если х
• если х
В свою очередь параметрический статистический контроль может быть одноступенчатым или многоступенчатым.
Одноступенчатый контроль осуществляется по результатам одной выборки, а многоступенчатый – по результатам нескольких выборок. При этом каждой выборке в общем случае соответствует свой оценочный норматив (приемочный и браковочный уровень).
Многоступенчатые правила контроля более экономичны по сравнению с одноступенчатыми, но организация их вызывает большие трудности.
Параметрический одноступенчатый контроль. Такой контроль показателей безотказности – наработки до отказа (на отказ, между отказами) – осуществляется по выборочному среднему (5.4) значению T в соответствии со следующими условиями: приемки (соответствия контролируемого показателя заданным требованиям) TT
где T
План контроля (количество измерений m и оценочный норматив Т
При нормальном распределении наработки до отказа (на отказ, между отказами) соотношения (5.5) принимают вид:
где F (·) – нормированная и центрированная функция нормального распределения.
С учетом зависимостей (5.6) требуемое количество измерений:
где U
При a = в = ц соотношение (5.7) можно представить в виде:
Таблица 5.7
На основании зависимостей (5.6) получаются выражения для оценочного норматива:
при этом m определяется из соотношений (5.7) и (5.8).
Наконец, требуемый объем (суммарная наработка в процессе испытаний):
t = mT
где m и T
При распределении наработки до отказа (на отказ, между отказами) по закону Вейбулла соотношения (5.5) принимают вид: