Подход к измерению погрешности, на основе которого сделан этот вывод, имеет давнюю историю и является общепринятым в науке и статистике. В этой главе мы дадим обзор истории этого подхода и вкратце опишем его основные тезисы.
Нужно ли компании GoodSell
сокращать уровень шума?Представьте себе крупную компанию розничной торговли под названием
На рисунке 3 изображен (неправдоподобно плавный) график с результатами этой ревизии. Эми видит, что прогнозы расположились на кривой, имеющей знакомые очертания колокола, также известной как нормальное распределение, или распределение Гаусса.
Чаще всего эксперты компании давали оценку в 44 %, что отражено в самой верхней точке кривой. Эми убеждается, что в системе прогнозирования компании довольно много шума, ведь будь прогнозы точны, они были бы идентичными, однако на деле они варьируются в широком диапазоне.
Уровень шума в прогнозах компании
Как и руководство реально существующей страховой компании из главы 2, Эми потрясена результатами и хочет принять меры. Непозволительно высокий уровень шума указывает на то, что прогнозисты недостаточно строго следуют необходимым процедурам. Чтобы сделать действия специалистов более единообразными и упорядоченными, Эми просит разрешения нанять консультанта по шуму, но, к сожалению, эта идея не находит поддержки. Ответ ее начальника кажется вполне разумным: «Как можно сократить погрешность, если мы не знаем, насколько верны наши прогнозы? Конечно, если погрешность в них действительно велика (то есть имеется большое смещение), мы должны приложить максимум усилий для их устранения. Прежде чем принимать меры по улучшению качества прогнозов, нужно подождать и посмотреть, насколько точными они окажутся».
Спустя год после ревизии шума стали известны результаты, которые пытались предугадать прогнозисты. Доля рынка компании в целевом регионе составила 34 %. Теперь мы можем оценить погрешность каждого прогноза: нужно просто подсчитать разницу между прогнозом и результатом. Если эксперты прогнозировали 34 %, то погрешность оказалась нулевой, для среднего прогноза в 44 % погрешность составила 10 %, а для заниженного прогноза в 24 % она оказалась – 10 %.
На рисунке 4 показано распределение ошибок. Выглядит так же, как и распределение прогнозов на рисунке 3, но из числового значения каждого прогноза было вычтено истинное значение (34 %). Кривая распределения не изменилась, и стандартное отклонение (выбранная нами единица измерения шума) все еще составляет 10 %.
Разница между кривыми на рисунках 3 и 4 аналогична разнице между разбросом попаданий, видимых на передней и задней поверхностях мишени с рисунков 1 и 2 (