Уравнение расчета погрешности определенно говорит в пользу первоначального порыва Эми принять меры по сокращению уровня шума. Каждый раз, когда вы обнаруживаете шум, вы должны постараться его уменьшить! Уравнение указывает на то, что шеф Эми был не прав, предложив подождать до момента, когда можно будет измерить смещение в прогнозах, и только затем принимать решение о дальнейших действиях. При подсчете общей погрешности шум и смещение выступают независимо: выгода от сокращения уровня шума никак не изменится, каким бы при этом ни было смещение.
Эта идея крайне парадоксальна, но при этом принципиально важна. В качестве демонстрации на рисунке 8 показан эффект от одинакового сокращения смещения и шума. Чтобы вам было проще оценить, чего удалось достичь в каждом случае, мы представили первоначальное распределение ошибок (с рисунка 4) в виде пунктирной линии.
В случае А мы исходим из того, что начальник Эми настоял на своем: был определен уровень смещения, затем его сократили вдвое (возможно, предоставив данные исследования прогнозистам, оказавшимся слишком оптимистичными). Уровень шума остался неизменным. На графике сразу заметны улучшения: распределение ошибок целиком сдвинулось в направлении истинного значения.
В случае Б мы видим, что бы произошло, если бы Эми все же удалось переубедить своего шефа. Уровень смещения не меняется, а шум сокращается вдвое. Парадокс в том, что создается впечатление, что снижение уровня шума только ухудшило ситуацию. Теперь разброс прогнозов гораздо меньше (ниже уровень шума), но они не стали точнее (смещение не изменилось). Если раньше по одну сторону от истинного значения были 84 % прогнозов, теперь там оказались почти все прогнозы (98 %). Кажется, что сокращение шума значительно ухудшило их качество – совсем не похоже на положительные изменения, на которые так надеялась Эми!
Вопреки создавшемуся впечатлению, в обоих случаях общая погрешность уменьшилась одинаково. Иллюзия того, что в случае Б результаты стали хуже, возникает из-за ошибочных интуитивных представлений о смещении. Целесообразной мерой смещения следует считать не то, какой процент ошибок оказывается по разные стороны от нулевой погрешности, а среднюю погрешность – расстояние между наивысшей точкой кривой и истинным значением. В случае Б средняя погрешность не изменилась. Она все еще высока – 10 %, но больше она не стала. Действительно, смещение стало гораздо заметнее, потому что теперь его вклад в общую погрешность весомее (80 % против 50 % ранее). Но это произошло потому, что уменьшился уровень шума. Напротив, в случае А смещение сократилось, а шум остался прежним. В конечном счете MSE одинакова в обоих случаях: равные объемы сокращения шума или смещения оказывают на MSE один и тот же эффект.
Как показывает этот пример, среднеквадратическая ошибка противоречит нашим интуитивным представлениям об оценке прогнозных суждений. Чтобы минимизировать MSE, нужно постараться избежать значительных ошибок. К примеру, при измерении длины эффект от уменьшения погрешности с 11 см до 10 см в 21 раз выше, чем эффект ее сокращения с 1 см до истинного значения. К сожалению, интуитивные представления в этом отношении45
почти зеркально противоположны верным: люди всеми силами стремятся получить максимально точный ответ и очень внимательно относятся к небольшим погрешностям, при этом практически игнорируя разницу между двумя значительными ошибками. Даже если вы искренне полагаете, что пытаетесь добиться точности суждения, ваш эмоциональный отклик на результаты может помешать достижению точности в научном понимании.Конечно же, самым оптимальным решением в этой ситуации будет заняться уменьшением как шума, так и смещения. Поскольку эти величины друг от друга не зависят, бессмысленно выбирать между предложениями Эми Симкин и ее начальника. Если компания
Разумеется, при уровне смещения намного больше уровня шума сокращение последнего будет менее приоритетной задачей. Но пример с компанией