Читаем Системная реабилитология полностью

В результате прямого повреждения ДНК или при альтерации клеток, которая тоже может сопровождаться повреждением генов, включается саногенетическая программа синтеза и репарации клеточных геномных компонентов (белков, липидов, углеводов) взамен поврежденных или утраченных. Поврежденный участок структуры ДНК обнаруживается и удаляется, а по матрице комплементарной цепи восстанавливается должная последовательность ДНК. Эта саногенетическая программа сложна и требует последовательного использования четырех энзимов: эндонуклеазы — вырезающей поврежденный участок, экзонуклеазы — разрушающей дефектный фрагмент, ДНК-полимеразы — синтезирующей восстановленную последовательность, и лигазы — вклеивающей ее на место. В клетке также имеются ферментные системы, устраняющие мелкие поломы в геноме: деметилазы — удаляющие метиловые группы, лигазы — устраняющие мелкие разрывы в цепях ДНК, возникающие, например, при повреждении клетки ионизирующим излучением. В присутствии поврежденной ДНК активируется фермент поли-АДФ-рибозилполимераза (ПАРП), который вызывает сшивку белков хроматина, закрепляя этим разорванные хроматиновые нити, склеивая разрывы и препятствуя транскрипции поврежденной ДНК, ограничивая хромосомные аберрации. Этот саногенетический процесс достаточно мощен и надежен и позволяет исправить до 95% спонтанных мутаций (Дж. Хофман). Но и он не всегда способен защитить клетку до конца, а в некоторых случаях сам может стать источником повреждения. Так, например, при спонтанной транслокации (изменение размещения) фрагмента ДНК может произойти изменение экспрессии генов. Активная деятельность ПАРП приводит к лавинообразному накоплению поли-АДФ-рибозилов и истощению никотинамиддинуклеотида, вследствие чего тормозится ресинтез макроэргов. В дальнейшем при нехватке энергии в процессе трансформации пуриновых оснований выделяются супеоксидные анионы (активный кислородный радикал), которые вызывают вторичное самоповреждение ДНК.

При возникновении клеточного повреждения в клеточных ядрах происходит включение целого ряда специальных аварийных саногенетических программ, считывание (реализация) которых в нормальных условиях отсутствует. К ним относятся:

— Активация генов синтеза белков теплового шока.

— Активация генов непосредственно раннего реагирования.

— Экспрессия антионкогенов.

— Активация генов апопотоза.

— Активация гена-маркера стареющих и поврежденных клеток.

Установлено, что в клеточном молекулярном механизме повышения устойчивости к действию повреждающих факторов и сохранности живой системы при возникновении повреждения большую роль играет включение синтеза в клетке специальных, так называемых «стресс-белков» (белков теплового шока).

1. Программа синтеза белков теплового шока (БТШ).

Белки теплового шока — полифункциональные белковые клеточные регуляторы, непременные участники саногенетических процессов любых клеток на любое повреждение. В небольшом количестве БТШ синтезируются в клетке и в норме. Их функция — стабилизация беловых молекул и сопровождение (конвоирование) их после трансляции к месту образования молекулярных комплексов. Качественно другая продукция данных белков может быть индуцирована клеточным повреждением вследствие различных воздействий (инфекция, воспаление, гипоксия, химическое повреждение клеток солями тяжелых металлов, мочевиной, перекисью водорода, мышьяком, этиловым спиртом и т. д.). Считается, что БТШ во время развертывания цепи клеточного повреждения способны поддерживать нативную конформацию клеточных белков, предохранять их от агрегации и денатурации, сохранять их растворимость, которая при клеточном повреждении утрачивается. БТШ повышают устойчивость клеточного аппарата биосинтеза. Кроме этого, они регулируют клеточный протеолиз уже денатурированных белков.

Выделяют 4 группы БТШ, которые различаются по молекулярному весу и функции:

1. Белки с молекулярной массой 84—110 кДа взаимодействуют с рецепторами стероидных гормонов, предупреждая в отсутствие стероидов (гормоны стресса) ассоциацию рецепторов с собственным хроматином (блокада саногенетических стрессорных программ до наступления стресса). Более того, комплекс БТШ и рецептора способен связывать иммунофилины — внутриклеточные мишени иммунодепрессантов типа циклоспорина.

Перейти на страницу:

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука