Запуск генов, программирующих клеточную разборку, может быть индуцирован рецепторно-опосредованным сигналом. Так, например, глюкокортикоиды и цитокины могут инициировать апоптоз, причем в одних клетках, в зависимости от их исходного состояния, они его запускают, а в других — его ингибируют. Но важно отметить, что апоптоз может возникать и в безъядерных клетках. Следовательно, первичным звеном апоптоза могут быть не только ядерные события, но и определенные метаболические изменения в цитоплазме, например, активация долгоживущих матричных РНК. Апоптоз — саногенетическая программа самоуничтожения клеток реализуется при следующих генетически детерминированных ситуациях: а) устранение клеток в раннем онтогенезе; б) физиологическая инволюция и уравновешивание митозов в зрелых тканях и клеточных популяциях; в) реализация процессов атрофии и регрессии гиперплазии (гипоплазия); г) уничтожение мутантных и пораженных вирусом клеток; д) клеточная гибель после слабого воздействия агентов, вызывающих в большой дозе неизбежный клеточный некроз. Устранение клетки без повреждения возможно и при экспрессии на поверхности клетки антигена стареющих клеток.
Последовательность событий в ходе апоптоза выглядит следующим образом. Экспрессия генов апоптоза приводит к продукции специальных белков апоптоза и связыванию их с ДНК, вследствие чего наблюдается разрыв межнуклеарных связей. Резко увеличивается содержание кальция в цитоплазме, активируются эндонуклеазы, трансглютаминазы, подвергается протеолизу цитоскелет, усиливается продукция активных кислородных радикалов (АКР), активируются цитоплазматические протеазы-кальпаины (агрегация цитозольных протеинов), избирательно и планово синтезируются белки теплового шока (БТШ). Наблюдается аутофагия митохондрий, хотя выраженного энергодефицита нет. Межнуклеосомные разрывы упорядочены, фрагментация и конденсация цитоплазмы, конденсация и рексис ядра проходят с участием цитоскелета. Клеточные мембраны долго остаются стабильными. Конченым этапом процесса является распад клетки с образованием апоптотических телец и последующим их аутофагоцитозом. Из приведенного описания апоптоза явно видны качественные его отличия от некроза. Таким образом, апоптоз, безусловно, имеет саногенетический характер. Принципиально важно, что при неспособности реализовать апоптоз может возникнуть неограниченно пролиферирующий клон клеток (онкологический рост).
Подводя итог описанию клеточных саногенетических механизмов, необходимо заметить, что каждый из них может нести в себе защитные и вторичные повреждающие эффекты. Такая двойственность может быть объяснена так называемым «принципом пермиссивности биологических эффектов регуляторов» (Л. Р. Перельман). Качество регуляторного эффекта будет зависеть не только от характера регулятора, но и от того информационно-регуляторного фона, на котором его эффект разворачивается. Несмотря на очевидное положительное значение СГР, в ряде случаев при своем неограниченном и неуправляемом развитии они могут стать новым этиологическим фактором, приводящим в развитию новой патологии, например, генетическое перерождение, атипичный рост и т. д.
Следует также сказать, что если саногенетические реакции неэффективны на клеточном уровне и их защитный механизм не срабатывает, то в дело вступает главная саногенетическая система организма — иммунная система (Т-киллеры, НК-клетки, макрофаги, антитела), которая способна исправлять дефекты или нейтрализовать их.
ГЛАВА 6. Тканевая функциональная система и ее компенсаторно-приспособительные феномены. Механизмы тканевого повреждения. Саногенетические программы на тканевом структурно-организационном уровне
Согласно определению А. А. Заварина «под тканью понимают систему элементов — клеток и межклеточных структур, имеющих общие морфо-биохимические и системные характеристики и выполняющие общие функции». С позиции теории функциональных систем, горизонтальный вектор структурной организации которой предполагает формирование функциональной системы в пределах одного организационного уровня, под тканью следует понимать структурно-функциональное образование, включающее в себя межклеточное пространство, рецепторы, иннервирующие окончания, периферические нейроны, кровеносные сосуды, паренхиматозные, стромальные, секреторные, соединительнотканные, гладкомышечные, иммунные и другие клетки. При этом ткань рассматривается не как совокупность морфологически однородных клеток, а как