*
Будем считать, что главным предикатам Φ1-Φr соответствуют отношения ψA, ψB, ψD, ψE строгого частичного порядка и отношения α, α-1, β, β-1, σ, σ-1, φ, φ-1, ψAF, ψ-1AF, ψ-1BF, ψDF, ψ-1DF, ψEF, ψ-1EF. Предположим, что на всех моделях, как полной системы, так и ее частей (основная и дополнительная системы, структура и процесс системы) сохраняются главные операции W.
* Сформулируем теперь модели процесса и структуры системы. Далее, если это не требует специальных разъяснений, все дальнейшее изложение будем вести для модели конкретной реализации системы с набором главных предикатов Φ;
множества А, В, D, Е линейно упорядочены; для описания связей выберем отношения α, β, σ, φ, ψв, , и, соответственно , α-1, β-1, σ-1, φ-1, ψ-1в. Для описания взаимосвязи с F выберем отношение ψ вf. Выбор такого набора отношений соответствует наиболее распространенной схеме формирования системы, уже описанной в начале раздела в виде процесса достижения цели, когда для достижения системы целей F формируется множество элементарных процессов В. Будем считать, что главные предикаты Φ1 ÷ Φr описывают только выбранные бинарные отношения. Можно выбрать и другой набор отношений; при любом наборе отношений, устанавливающих взаимосвязи между всеми множествами А, В, D, E, F, будут справедливы результаты, полученные ниже.
* Модели процесса и структуры системы определим в следующем виде.
Процесс Р системы S (назовем его также
полным системным процессом) – это множество взаимосвязанных элементарных процессов:P = < {B, D}, W, Φp
>; Φр ⊂ Φ.(3.3.2)Структура С системы S (назовем ее также
полной системной структурой) – это множество взаимосвязанных элементов системы:С = < {A, E}, W, Φc
>; Φс ⊂ Φ.(3.3.3)
* В соответствии с принятыми исходными положениями моделирования системы имеет место взаимнооднозначное соответствие между элементами множеств А
и В. Взаимнооднозначное соответствие имеет место также между элементами множеств E и D; следовательно, имеет место взaимнооднoзначное соответствие между элементами множеств-носителей в (3.3.2) и (3.3.3). Имеется также взаимнооднозначное соответствие между каждыми двумя упорядоченными парами (аi, ej ) и (вi, dj), что однозначно следует из исходных положений описания с помощью сигнатуры Φ целенаправленного процесса формирования модели (3.3.1). Следовательно, имеется взаимнооднозначное соответствие между элементами сигнатур Φр и Φс , Φр ⇔ Φс. Далее, любая операция из Wc, например, объединение элементов а, а ∈ А и е, е ∈ E, взаимнооднозначно соответствует такой же операции из Wp, т.е., в данном случае, объединению процессов в, в ∈ B и d, d ∈ D. Следовательно, Wp = Wc. Но так как Wp ⊂ Wc , Wc ⊂ W и W \ {Wp ⋃ Wc} = ∅, то Wp = Wc = W. Итак, доказана следующаяТеорема 3.1.
Для модели системы S модели процесса Р и структуры С изоморфны.
* Модели полных, основных и дополнительных системных объектов
.На основе (3.3.1)–(3.3.3) сформулируем следующий результат.
Теорема 3.2.
Модель полной системы S – это совокупность моделей процесса Р и структуры С:S = < P,C,Φ(α),Φ(α-1
),Φ(β),Φ(β-1)>(3.3.4)