Читаем Системное программирование в среде Windows полностью

К этому времени мы успели познакомиться со всеми объектами синхронизации Windows и исследовали их применимость на ряде примеров. Мьютексы и объекты CS рассматривались первыми, а поскольку события мы еще будем интенсивно использовать в следующей главе, то настоящую главу целесообразно завершить рекомендациями относительно применения мьютексов и объектов CS для обеспечения корректности выполнения, удобства сопровождения и повышения производительности программ.

Приведенные ниже утверждения сформулированы, как правило, в терминах мьютексов, однако, если не оговорено иное, все сказанное относится и к объектам CS.

• Если функция WaitForSingleObject, одним из аргументов которой является дескриптор мьютекса, вызывается без использования конечного интервала ожидания, то вызывающий поток может оказаться блокированным на неопределенное время. Ответственность за то, чтобы захваченный (блокированный) мьютекс в конечном счете был освобожден (разблокирован), возлагается на программиста.

• Если поток завершает выполнение или его выполнение прерывается до того, как он покинет (разблокирует) объект CS, то этот объект остается блокированным. Чрезвычайно полезным свойством мьютексов является то, что владеющий ими поток может завершить выполнение, не уступив прав владения мьютексом.

• Не пытайтесь получить доступ к ресурсам, защищаемым мьютексом, если функция WaitForSingleObject вызвана с использованием конечного интервала ожидания.

• Ожидать перехода блокированного мьютекса в сигнальное состояние могут сразу несколько потоков. Когда мьютекс освобождается, то только один из ожидающих потоков получает права владения мьютексом и переводится в состояние готовности планировщиком ОС на основании действующей стратегии приоритетов и планирования. Не следует делать никаких предположений относительно того, что какой-либо поток будет пользоваться приоритетом; как и в любом другом случае, программу следует проектировать таким образом, чтобы приложение работало корректно независимо от того, какой именно из ожидающих потоков получит права владения мьютексом и возобновит выполнение. Те же замечания остаются справедливыми и в отношении потоков, ожидающих наступления события; никогда не следует предполагать, что при переходе объекта события в сигнальное состояние освободится какой-то определенный поток или что потоки будут разблокированы в какой-то определенной очередности.  

• К критическому участку кода относятся все операторы, расположенные между точками программы, в которых поток приобретает права владения мьютексом и уступает их. Для определения нескольких критических участков кода может быть использован один и тот же мьютекс. Корректная организация программы предполагает, что критический участок кода, определяемый мьютексом, в каждый момент времени может выполняться только одним потоком.

• Определяемая мьютексами степень детализации программы, или гранулярность мьютексов (mutex granularity), оказывает влияние на производительность и требует серьезного рассмотрения. Размер каждого критического участка кода ни в коем случае не должен превышать необходимой величины, и мьютекс не должен захватываться на более длительный промежуток времени, чем это необходимо. Использование критических участков кода чрезмерно большого размера, захватываемых на длительные промежутки времени, снижает параллелизм и может оказывать отрицательное влияние на производительность.

• Связывайте мьютекс непосредственно с ресурсом, защиту которого он должен обеспечивать, возможно, с использованием структуры данных. (Именно эта методика задействована в программах 8.1 и 8.2.)

• Максимально точно документируйте инвариант, используя для этого словесные описания либо логические, или булевские, выражения. Инвариант— это свойство защищаемого ресурса, сохранение которого неизменным вне критического участка кода вы гарантируете. Форма выражения инвариантов может быть самой различной: "элемент принадлежит обоим спискам или не принадлежит ни одному из них", "контрольная сумма данных в буфере является достоверной", "связанный список является действительным" или "0 <= nLost + nCons <= sequence". Точно сформулированные инварианты могут использоваться совместно с макросом ASSERT при отладке программ, хотя оператор ASSERT должен иметь собственный критический участок кода.

• Убедитесь в том, что каждый критический участок кода имеет только одну точку входа, в которой поток блокирует мьютекс, и только одну точку выхода, в которой поток освобождает мьютекс. Избегайте использования сложных операторов ветвления и таких операторов, как break, return или goto, предоставляющих возможность выхода за пределы критического участка кода. Для защиты от подобных рисков оказываются удобными обработчики завершения.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных