Мы оба повернулись направо, сразу же определив направление звука, который шел из-за сетчатой ограды. Мальчик перебрасывался мячом с пожилым мужчиной в полупустом школьном дворе. В углах баскетбольной площадки стояли лужи; трибуны были пусты. Я непроизвольно взялась рукой за сетчатую ограду, будто это могло помочь лучше расслышать то, что происходило за ней. Звуки школьного двора: есть ли что-нибудь более ностальгическое? Удары мяча, пронзительные крики детей, прыгающих, бегающих, догоняющих и уворачивающихся друг от друга, стук скакалки. В углу двора стояли игровые комплексы, и, еще не успев их рассмотреть, я подумала о качелях – невозможно скрипучих, с продавленными резиновыми сиденьями. Я не только сама успела посидеть на бесчисленных качелях, но и регулярно усаживала на качели сына.
Один лишь вид площадки вызвал рой воспоминаний (
“…Это и есть один из главных звуков школьного двора”, – сказал он, имея в виду идею Шейфера об элементах звукового ландшафта, которые характеризуют пространство и на которые мы не всегда сознательно обращаем внимание. На мальчике с мячом были высокие оранжевые кроссовки, и я попыталась сопоставить его движения со скрипом, который слышала. Это был очень “баскетбольный” звук. Настолько баскетбольный, что, по словам Лерера, операторы кладут микрофон прямо на площадку, чтобы поймать эти звуки: “Они знают, насколько это захватывающий звук – скрип кроссовок”. Вот безумие!
Я спросила, пробовали ли операторы усиливать этот звук для большего эффекта.
“Еще бы!” – ответил звукооператор.
Мы задержались у школьного двора. Два подростка вошли туда и двинулись к баскетбольной площадке. Один подпрыгнул, дотянувшись рукой до кольца, другой повел мяч, наполнив пространство звонкими ударами. Звук ударил прямо в лицо, словно запах спелой дыни. Я спросила Лерера, почему звуки здесь звонкие и бодрящие.
“Это довольно простые физические законы”, – ответил он. Звуки распространяются в воздухе с одинаковой скоростью: около 335 м/с. Поэтому, если оценить расстояние от источника звука до окружающих поверхностей и выяснить, из какого материала эти поверхности, можно довольно точно предсказать, что именно услышит наблюдатель. Так, в этом дворе с тремя кирпичными стенами и асфальтом под ногами звук “сильно реверберирует”. Игра в мяч для софтбола шла близко к задней стене; баскетболисты находились недалеко от боковой стены. Близость к стенам усиливала производимые ими звуки. “Если вы прислушаетесь, – сказал Лерер, – то услышите раннее эхо… Вы не услышите эхо, отраженное от этой [первой] стены, как отдельный звук; оно просто усиливает исходный звук”. Что касается других стен, то, по нашим оценкам, звук за 70 мс достигал их и возвращался к нашим ушам, порождая второй звук, “который можно уловить: ТИИ-
Причина, по которой мы не могли отличить звуки ударов баскетбольного мяча или мяча для софтбола от их первичных, самых ранних отражений, заключалась в том, что стены находились на расстоянии менее 6 м или около того. Человеческий слух не настолько чуток, чтобы различать одинаковые звуки, возникающие с разницей менее 40 мс (менее 1/20 доли секунды). В этом случае звуки сливаются, образуя звуковое облако. Лерер использует этот акустический феномен в работе с живым звуком, когда нужно контролировать “артикуляцию” или внятность сигнала акустической системы: используя микрофон в театре, чтобы усилить звук, идущий со сцены, он устанавливает его так, чтобы зрители слышали звук микрофона одновременно со звуком на сцене. Однако, учитывая то, как устроены наши уши, остается пространство для ошибки: 40 мс или меньше. То есть если микрофон установить примерно в 15 м, некоторые услышат его звук как эхо.