Больцман спровоцировал бурные дискуссии в сообществе физиков, по-прежнему полагавших, что во вселенной все предопределено и подчинено законам Ньютона. Они были твердо убеждены в нестатистической природе вселенной, где отлично работают простые прогнозы. В итоге теория Больцмана не раз подвергалась жесткой критике. К большому сожалению, это ввергло его в состояние фрустрации и в депрессию, и в 1906 году, поехав с семьей отдохнуть в окрестностях Триеста, он свел счеты с жизнью – незадолго до того, как его теория получила полное и безоговорочное признание.
Законы статистики по сей день приводят физиков в замешательство. Начать с того, что ньютоновские законы симметричны относительно времени, а стало быть, обратимы. Конечно, в детерминистском мире, описанном Ньютоном, то, что продвинулось вперед, точно так же может вернуться назад. Статистические законы, очевидно, работают иначе. Как событие может быть обратимым, если оно происходит не обязательно, а лишь с некоторой вероятностью? Не может, и на первый взгляд эти две точки зрения на реальность противоречат друг другу. Чтобы урегулировать расхождения, требовалось новое мышление. Атомная физика давалась ученым с трудом, но, проникнувшись ее идеями, они стали развивать эту область науки и активнее изучать открывшийся им новый мир. В 1897 году английский физик Джозеф Джон Томсон, не откладывая дело в долгий ящик, открыл и описал первую элементарную частицу – электрон. Великий физик Томсон был еще и великолепным учителем. Мало того что он сам за свои выдающиеся заслуги удостоился рыцарского звания и Нобелевской премии – лауреатами Нобелевской премии за собственные достижения в науке стали также восемь его учеников, среди которых был не только его сын, но и великий Нильс Бор, который в конце концов выдвинул теорию дополнительности. Но я опережаю события. Прийти в согласие с новым миром удалось лишь после определенных дискуссий.
Мысли об энтропии и втором законе термодинамики не оставляли Макса Планка, немецкого физика-теоретика. Поначалу он верил в
Возможность представилась в 1894 году, когда Планку поручили важное задание – оптимизировать лампочки так, чтобы получить максимальный световой поток при минимальных энергозатратах. Для этого ему пришлось заняться отдельной проблемой –
Такой идеализированный объект называется черным телом, а исходящее от него излучение – излучением черного тела. Классические законы физики не позволяли точно оценить количество и частоту излучения, испускаемого таким черным телом. Для низких частот (красного света) законы Ньютона работали удовлетворительно, но для волн с более высокими частотами никакие прогнозы не оправдывались. После множества неудачных попыток применить классическую физику Планк скрепя сердце обратился к статистической трактовке энтропии. Когда он ввел понятие «элементов энергии» и установил, что энергия – это «дискретная величина, состоящая из целого числа конечных равных частей»[12], ему удалось составить уравнение, которое хорошо описывало излучение черного тела.
Ни сам Планк, ни кто-либо еще тогда не понимал, что в основе его закона излучения лежит совершенно новая концепция, принципиально иной взгляд на природу. Это была первая попытка заглянуть в квантовый мир. Кроме того, открытие Планка показало, что не существует ни единого фундаментального свода законов, ни единой модели вселенной. Можно сказать, он вбил последний гвоздь в крышку гроба ньютоновской теории о детерминированности всего на свете.