Далее он говорит, что, если вы хотите понять суть физического закона, важно учитывать этот специфический момент, «так как это характерная особенность всех частиц в природе без исключения».
Субмикроскопический квантовый мир скрыт от наших глаз. Стало быть, узнать что-либо о нем можно только с помощью некоторых измерительных взаимодействий. В частности – кое-каких средств, применяемых в нашем макромире, который, в свою очередь, состоит из атомов, способных реагировать с измеряемыми частицами и вносить возмущения, в то время как эти частицы, ничего не подозревая, заняты собственными делами. Из-за таких возмущений динамика системы будет развиваться совсем по другому пути, чем до того, как было проведено измерение. Короче говоря, явно вырисовывалась неизбежная проблема, связанная с измерениями. Вторжение в квантовый мир сулило немалые трудности и требовало нового мышления.
Итак, приступим: оказывается, как и догадался Эйнштейн, свет ведет себя и как волна, и как поток частиц. Через несколько лет выяснилось, что это справедливо и для вещества – электроны тоже обладают свойствами волн и частиц. Вскоре физики согласились с тем, что объекты макромира (к примеру, обеденный стол), которые мы воспринимаем как сплошные монолиты, а не как огромное множество разделенных атомов, – это всего лишь результат смоделированного усредненного процесса «в по существу своему прерывном мире», как выразился Иоганн фон Нейман, занимавшийся прикладной математикой, физикой и многими другими науками. «Человек обычно сразу апперцепирует только сумму многих квадрильонов элементарных процессов, так что истинная природа единичного процесса оказывается полностью завуалированной все нивелирующим законом больших чисел»[17], – продолжает он. По «нивелирующему закону больших чисел», движение отдельных частиц компенсируется в общей картине, и именно по этой причине стол не приплясывает, а ровно стоит на полу. Однако устойчивый стол, который мы видим, – это иллюзия, условная репрезентация, созданная нашим мозгом для того, чтобы засвидетельствовать существование стола. Это очень качественная иллюзия, она несет верную информацию и позволяет нам нормально жить в этом мире.
Австрийский физик Эрвин Шрёдингер, хозяин знаменитого «кота в ящике», тоже хотел упрочить детерминистский мир, где все всегда чем-то обусловлено. Он составил уравнение, впоследствии получившее название уравнения Шрёдингера, – «закон», описывающий поведение квантовой волны и ее динамического изменения во времени. Несмотря на его обратимость и детерминистский характер, этот «закон» не годится для описания состояния всей системы в целом. В нем не учитывается корпускулярная природа электрона – свойство, которое Шрёдингер пытался обойти. По этому закону нельзя определить точное положение электрона на орбите в любой заданный момент времени. Точные координаты электрона в определенный момент времени – так называемое квантовое состояние – можно только предположить, исходя из вероятности события.
Чтобы узнать, где именно находится электрон, надо провести измерения, и вот тут-то для ортодоксальных детерминистов и начинаются все неприятности. Как только измерение выполнено, квантовое состояние, можно сказать, аннулируется – в том смысле, что все прочие вероятные состояния электрона, которые он мог бы принять (это называется суперпозиция), сведены к одному-единственному. Любые другие варианты отпали. Измерение, безусловно, было необратимо и, вызвав такой коллапс, наложило на систему ограничения. За последующие несколько лет физики поняли, что в масштабе квантовой механики поведение объектов в данный момент времени невозможно описать полностью ни с точки зрения классического представления о частицах, ни в терминах волн. Как шутил Фейнман, «они ведут себя не как волны и не как частицы, это квантово-механическое поведение»[18].
Тогда на помощь пришел нобелевский лауреат из Дании и великий знаток электронов Нильс Бор. Две недели он катался на лыжах в норвежских горах, размышляя в одиночестве о двойственной природе электронов и фотонов, а в итоге привез оттуда