Эйнштейна уже ничто не могло остановить. Представив эмпирические факты, подтверждающие существование атома, он раз и навсегда разрешил спор на эту тему и «санкционировал» применение статистической физики. Вишенкой на торте стала его теория относительности и знаменитое уравнение
Впрочем, как только физики догнали химиков и вдумались в положения атомной теории, они довольно скоро поняли, что все эти микроскопические кирпичики природы – элементарные частицы, атомы и молекулы – не подчиняются законам Ньютона, а нарушают их. Теряя энергию, вращающиеся вокруг ядра электроны не падают на него, как следовало бы ожидать, исходя из законов Ньютона, а остаются на своих орбитах – и это был неоспоримый факт. Но почему?
В 1925 и 1926 годах группа физиков, куда входил Вернер Гейзенберг, работавший в Геттингенском университете и часто посещавший Нильса Бора в его копенгагенском институте, продолжала развивать квантовую теорию, стремясь пролить свет на три великие тайны – излучение черного тела, фотоэлектрический эффект и стабильность движущихся вокруг ядра электронов. Нравилось это физикам или нет (а многим, в том числе и Планку с Эйнштейном, не нравилось), но их выбило из ньютоновского детерминистского мира, унесло с того видимого и осязаемого физического «слоя», где мы все обитаем и где всему есть одно универсальное объяснение, и они попали в более глубокий слой – в тайный, полный парадоксов, статистический, недетерминированный мир квантовой механики. Черно-белый мир четких и ясных ответов сменился миром, где ответы имеют множество оттенков, – параллельно существующим слоем с другим протоколом.
Возьмем для примера отражение света. Отражается всего 4 % попавших на стекло фотонов, а остальные поглощаются. Но какие из них отражаются, от чего это зависит? Многолетние исследования с использованием самых разных методов дали вероятный ответ – все дело в случае. Будет ли фотон отражен или поглощен – чистая случайность. «Значит ли это, что мы дожили до столь кошмарных времен, когда физика сводится к вероятностям, а не к удобным прогнозам. Да, такова нынешняя действительность… Вопреки условию, которое поставили философы: «Наука требует, чтобы при соблюдении одних и тех же условий эксперимента результаты были одинаковы». Ничего подобного. Иногда так и получается, а один раз из двадцати пяти – нет… непредсказуемо, совершенно случайно… вот как это происходит[15]», – говорил Ричард Фейнман. Мир неопределенности. В те времена это злило физиков. Даже Эйнштейн хотел бы захлопнуть дверь в мир без определенности, которую сам же и распахнул. Он много и мучительно размышлял о том, что все это значит для якобы детерминированной вселенной и причинно-следственных закономерностей; тогда-то он и произнес свою крылатую фразу: «Бог не играет в кости со вселенной». Однако если физики претендовали на звание ученых, они должны были расстаться со своими предубеждениями и идти по тому пути, который им указывали их открытия.
Когда мы говорим о ненормальном квантовом мире, нельзя упускать из виду, что сами мы обитаем в макромире ньютоновской физики. Здравый смысл – то есть повседневные физические законы, на которых зиждется макромир, – едва ли поможет нам в квантовой вселенной. Ничего похожего на нее нам раньше не встречалось. Свои интуитивные знания оставьте дома. Они вам не понадобятся и даже помешают. Читая курс физики, Фейнман начал лекцию о квантовом поведении с такого остроумного предупреждения:
До сих пор вы воспринимали все, что видели, неадекватно. Не полностью. Поведение объектов в столь мелком масштабе совершенно иное. Они ведут себя не как частицы. И не как волны… [Электроны] ведут себя отлично от всего, что вы видели раньше. Упрощает дело по крайней мере один факт – в этом отношении поведение электронов и фотонов абсолютно одинаково. То есть и те, и другие сходят с ума одинаково. Поэтому, чтобы оценить их поведение, требуется богатое воображение, ибо нам надо описать нечто, не похожее ни на что нам известное… Это абстракция в том смысле, что это далеко от практического опыта[16].