а) вся генеральная совокупность разбивается на части (серии или гнезда);
б) отбор единиц генеральной совокупности производится целыми сериями;
в) наблюдению подвергаются все без исключения единицы отобранной серии;
г) отбор носит случайный характер; Серийный отбор является менее точным способом отбора, однако его легче организовать;
3) механический отбор, который характеризует ся следующими чертами:
а) отбор осуществляется из всей генеральной совокупности;
б) отбор производится по механическому принципу (по списку, в шахматном порядке, по географическому признаку, в порядке убывания или возрастания).
Механический отбор является более точным, чем случайный, однако уступает типическому отбору.
На практике также часто применяется комбинированный отбор
, при котором сочетаются указанные выше способы отбора.Существуют два способа распространения данных выборочной совокупности на всю генеральную совокупность:
1) прямой, или способ прямого счета;
2) косвенный, или способ поправочных коэффициентов. При первом способе показатели, найденные посредством выборки (выборочная средняя или выборочная доля) умножаются на число единиц генеральной совокупности.
Второй способ применяется в целях проверки и уточнения данных сплошного наблюдения. В этом случае сопоставляют по соответствующим объектам данные выборочного наблюдения со сплошным, исчисляют поправочный коэффициент, которым и пользуются для внесения поправок в материалы сплошного наблюдения.
23. Функциональная, статистическая и корреляционная зависимости. Определение регрессии
Большинство социально-экономических явлений и процессов, исследуемых статистикой, взаимосвязаны между собой. Поэтому одна из основных задач статистики состоит в установлении и измерении причинно-следственных связей между изучаемой случайной величиной Y и одной или несколькими случайными (или неслучайными) величинами Х1,
При изучении причинно-следственных связей выделяют факторные и результативные признаки. Результативные признаки Y выступают в роли функции, т. к. они изменяются под воздействием факторных признаков. Факторные признаки Х1, Х2, …, Хn выступают в роли аргументов функции, т. к. они влияют на изменение результативных признаков.
Различают два вида связей между случайными величинами – функциональную и корреляционную.
Функциональная зависимость
характеризуется полным соответствием между зависимой (результативной) переменной Y и факторной переменной Х. Но в связи с тем что факторные и результативные переменные подвержены воздействию случайных факторов, как общих для обоих переменных, так и индивидуальных, то строгая функциональная зависимость на практике встречается редко.Предположим, что результативная переменная /зависит от случайных факторов Т1, Т2, М1, М2, а факторная переменная Х зависит от случайных факторов Т1, Т2, К1, то Y и Х связаны статистической зависимостью, т. к. среди случайных факторов есть общие – Т1 и Т2.
Статистическая зависимость
характеризуется изменением распределения одной величины под влиянием изменения другой.Корреляционная зависимость
характеризуется изменением средней величины одного из признаков под влиянием изменения значения другого признака.Зависимости
между факторной и результативной переменными могут быть прямыми или обратными:1) при наличии между переменными прямой связи
направление изменения результативной переменной совпадает с направлением изменения факторной переменной (с увеличением Х увеличивается и Y);2) при наличии между переменными обратной связи направление изменения результативной переменной противоположно направлению изменения факторной переменной (с увеличением Х переменная Y уменьшается).
Корреляционные зависимости в зависимости от количества факторных переменных делятся на однофакторные
(простые) и многофакторные (множественные):1) однофакторные корреляционные связи
– это связи между одной факторной переменной Х и одной результативной переменой Y;2) многофакторные корреляционные связи
– это связи между несколькими факторными Х1, Х2, …, Хn и одной результативной переменной Y.Условным средним
yx называется среднее арифметическое значений результативной переменной Y при условии, что Х = х. Тогда корреляционную зависимость результативной переменной Y от Х можно определить как функциональную зависимость условной средней yx от х:Полученное равенство называется уравнением регрессии Y на Х, а функция f(x) называется регрессией Y на Х.
Регрессией
называется функция, позволяющая по величине одной корреляционно связанной переменной рассчитать среднюю величину другой переменной.Основные задачи
, решаемые с помощью корреляционно-регрессионного анализа: