Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Успех всеобщей шрёдингеризации неотделим от способа описания квантовых систем, при котором различные «возможности» комбинируются в нечто единое, существуют вместе, но не растворяются друг в друге. Это определяющий момент в построении квантовой механики, ее внутренний механизм, работающий по своим особым законам. Из предыдущих глав должно быть ясно, что практически ничего «обычного» электрон и его собратья делать не могут: не могут, для начала, двигаться по определенным траекториям. На их долю остаются «переживания» (разумеется, в кавычках) в специальных математических пространствах. Там свои правила, и туда, довольно удивительным образом, переносятся основные события: там все и происходит.

Вообще для описания любой системы требуются средства, позволяющие перечислить все, что с ней в принципе может случиться – перечислить все ее возможные состояния. Не побоюсь тавтологии: «состояние» как теоретическая конструкция – например, для использования в уравнении – должно максимально полно описывать состояние интересующей нас системы. В нашем привычном мире эту роль выполняют положение в пространстве и скорость (с учетом направления, конечно) для каждой «самостоятельной» части системы, которая нас интересует. Камни могут лежать рядом друг с другом, а могут быстро разлетаться в разные стороны.

В квантовом же мире в абстрактную конструкцию состояния, какой бы она ни была, можно включить только по одному элементу из каждой враждующей пары «положение – скорость»: если положение в пространстве, то не скорость. Но куда же годится такое неполное описание с использованием только половины величин? В случае «камней» этой половины определенно было бы недостаточно. Кажется, что мы теряем возможность описывать, что происходит с квантовыми системами.

Здесь интрига усложняется. С одной стороны, я проявил пресловутую недисциплинированность мышления, перенеся на квантовый случай понятие «происходит», которое нагружено смыслами из окружающего мира, почти наверняка неприменимыми в мире квантовом; там не следует предполагать ничего из «очевидного», а рассуждать надо более формально. А с другой стороны – как раз в рамках более формальных рассуждений – оказывается, что хоть мы и ограничены «бедным» описанием на основе только половины величин, мы получаем за это неожиданную компенсацию: состояния наделяются особым свойством – возможностью комбинироваться колоссальным числом способов. Ради такой возможности им и приходится жить в математических пространствах.

Если квантовая система в принципе может находиться в состоянии А, а также может находиться в состоянии Б, то она может находиться и в произвольной комбинации этих состояний. Характерный пример «из жизни» мы уже встречали в главе 4: мы говорили там, что у электрона в атоме нет свойства занимать какое-либо положение в пространстве. К этому сейчас можно добавить, что причина – именно в комбинации (по официальной терминологии, суперпозиции) состояний. Электрон в атоме находится в комбинации состояний, каждое из которых отвечает определенному положению, но именно наличие комбинации не позволяет электрону занимать какое бы то ни было положение в пространстве. Если вам не вполне ясно, как представить себе такой способ существования электрона, то это нормально. Не оглядывайтесь по сторонам в надежде увидеть квантовое состояние! Их здесь нет, они населяют свое собственное пространство.

Комбинирование состояний не назвать наглядным именно потому, что прямого классического аналога у этого явления нет: оно определенно находится по ту сторону границы между классическим и квантовым. Чтобы не погружаться в психологию, которую я имел неосторожность затронуть в самом начале главы (и которая к квантовой теории прямого отношения не имеет), я предлагаю метафору квантовых состояний, в которой отсылаю всего лишь к волшебству. Ни одна метафора не совершенна, и никакую не следует заводить слишком далеко, чтобы не дойти до абсурда; эта моя метафора тоже не идеальна, но я надеюсь продержаться с ней некоторое время.

Представьте себе, что вы в казино и у вас на руках волшебная, «квантовая» карта – одна карта, содержащая в себе комбинацию нескольких: скажем, тройки треф, семерки треф и туза пик. Речь идет не о «комбинации» из нескольких карт, как «стрит» или «каре» в покере, а о (волшебной, как было сказано) комбинации из нескольких значений внутри одной карты.

Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература