Читаем Сто лет недосказанности: Квантовая механика для всех в 25 эссе полностью

Для учета таких комбинаций в этом казино – буквально повторяя то, как это делается в квантовой механике, – предлагается использовать арифметические действия. Например, содержанием вашей карты может быть «тройка треф плюс семерка треф» (туз пик в этот раз оказался исключенным). Этот плюс не означает, что у вас на руках десятка треф – нет, значения не складываются, значение каждой карты «защищено» тем, что это не число само по себе, а значение карты. Другой вариант комбинации – «семерка треф минус две тройки пик». Здесь тоже не надо производить арифметические действия: значения карт не участвуют в математических операциях. К числу «минус два», сопровождающему значение карты, надо относиться терпеливо, смысл таких чисел прояснится позже. (Кстати, эти числа могут быть абсолютно любыми, а целые я обычно использую только для простоты.)

Может наступить момент, когда казино попросит вас предъявить карту. Первое, что вам надлежит знать, – отказаться тут нельзя (к этому центральному обстоятельству в настоящей, не-метафорической квантовой механике мы еще будем возвращаться; в казино же это не проблема, там найдутся люди, которым трудно отказать). А кроме того, в тот момент, когда казино обязывает вас выложить карту, эта ваша карта перестает быть волшебной: она превращается в одну из обычных карт – но только в одну из тех, которые участвовали в комбинации. Если комбинация, которая составляла содержание вашей волшебной карты, – это «двойка червей минус две тройки пик плюс одна треть дамы треф», то предъявленная вами карта может оказаться или двойкой червей, или тройкой пик, или дамой треф (уже без всяких сопровождающих чисел). Но не какой-либо другой картой. Правда, решить, какой именно из перечисленных, вы не можете: волшебная карта, расколдовываясь в обычную при предъявлении, решает это за вас.

Мы начинаем подозревать, что комбинации внутри волшебных карт – это что-то вроде списка возможностей. И, честно говоря, называются они не комбинациями, а суперпозицией, а «волшебная карта» в квантовой механике называется волновой функцией. Волновая функция, описывающая состояние, скажем, электрона, может, например, быть комбинацией возможностей, каждая из которых – нахождение электрона в какой-то точке пространства; но пока там присутствует более одной возможности, электрон не находится ни в одной из этих точек. Различные волновые функции содержат много или мало возможностей и различаются теми числами, которые сопровождают каждую возможность{35}.

Полезным будет одно терминологическое упрощение: поскольку волновая функция – это все, что мы можем сказать о состоянии электрона, про нее можно думать и говорить, что она и есть состояние электрона. Собственно говоря, термины «волновая функция» и «состояние» указывают на одно и то же, но я употребляю то одно, то другое название, исходя из каких-то личных предубеждений: волновая функция просится на язык в более общем контексте («волновая функция электрона»), а состояние, как правило, относится к чему-то более конкретному («состояние с наименьшей энергией»); впрочем, четкой границы здесь нет.

Волновые функции/состояния населяют математическое пространство, которым я пугал читателя уже в главе 3. Математическое оно именно потому, что загруженным туда возможностям разрешается комбинироваться друг с другом путем сложения – с помощью знака плюс, используемого в том же слегка ускользающем смысле, что и в волшебных картах (кроме того, как мы видели, различные возможности могут умножаться на числа, например, минус два и одна треть). С нашим обычным пространством оно напрямую никак не связано.

Согласно принципам квантовой механики, нет никакого другого способа говорить о том, что «происходит с электроном», кроме как обсуждать его волновую функцию (она же – состояние). Все вопросы о том, «что делает» электрон, надо задавать волновой функции, и мы регулярно будем так поступать.

И если вы успели перевести дух после преодоления классическо-квантового водораздела, то вот следующий важный вопрос. Позади остались классические состояния, выражающие положения и скорости. Сейчас же перед нами волновая функция электрона в виде комбинации состояний, отвечающих различным положениям. Да, если этих положений хотя бы два (а их, как правило, бесконечно много), то электрон лишается свойства находиться в какой бы то ни было точке пространства. Но что со скоростью? «Приделать» дополнительную информацию о скорости к имеющейся волновой функции нельзя из-за вражды. Мы столкнулись лицом к лицу с вопросом, который, пусть робко, уже звучал раньше: не приводит ли вражда между величинами к неполному описанию мира?

Перейти на страницу:

Похожие книги

Что? Где? Когда?
Что? Где? Когда?

Книга известных игроков телевизионных клубов «Что? Где? Когда?» и «Брэйн ринг», членов Международной ассоциации клубов «Что? Где? Когда?» популяризирует интеллектуальные игры как эффективный способ занятия досуга и развития творческих способностей людей всех возрастов.Авторы раскрывают секреты составления вопросов, знакомят с методикой тренировки интеллектуальных способностей, делятся богатым опытом проведения турниров команд «Что? Где? Когда?» и «Брэйн ринг».В сборнике приведены вопросные материалы турниров, организованных московскими клубами «Что? Где? Когда?» в сезоны 1997-1999 гг.

Владимир Григорьевич Белкин , Евгений Венедиктович Алексеев , Ирина Константиновна Тюрикова , Максим Оскарович Поташев , Наиля Адилевна Курмашева

Научная литература / Прочая научная литература / Образование и наука
Достучаться до небес. Научный взгляд на устройство Вселенной
Достучаться до небес. Научный взгляд на устройство Вселенной

Человечество стоит на пороге нового понимания мира и своего места во Вселенной - считает авторитетный американский ученый, профессор физики Гарвардского университета Лиза Рэндалл, и приглашает нас в увлекательное путешествие по просторам истории научных открытий. Особое место в книге отведено новейшим и самым значимым разработкам в физике элементарных частиц; обстоятельствам создания и принципам действия Большого адронного коллайдера, к которому приковано внимание всего мира; дискуссии между конкурирующими точками зрения на место человека в универсуме. Содержательный и вместе с тем доходчивый рассказ знакомит читателя со свежими научными идеями и достижениями, шаг за шагом приближающими человека к пониманию устройства мироздания.

Лиза Рэндалл

Научная литература