И почему, собственно, сам прибор не подчиняется квантовой механике и не втягивается в запутанное состояние?
Подведем промежуточный итог, пусть даже вопросов пока больше, чем ответов. И уравнение Шрёдингера, и правило Борна подтверждены десятилетиями успешного применения. Первое определяет эволюцию волновой функции во времени, а второе сообщает, как извлечь из волновой функции вероятности исходов. Уравнение Шрёдингера по замыслу имеет универсальную применимость, а правило Борна применимо только при наличии измерительного прибора, который показывает однозначный результат измерения. Однако использование прибора каким-то образом нарушает уравнение Шрёдингера; дело выглядит так, как будто прибор не подчиняется правилам квантовой механики: его состояния не комбинируются, а потому и не запутываются. Взаимодействие с прибором, кроме того, вызывает временную отмену уравнения Шрёдингера и для измеряемой квантовой системы («электрона»): ее волновая функция претерпевает коллапс, т. е. схлопывается к одной возможности; чем управляется это схлопывание, неизвестно.
Такой взгляд на квантовую механику часто называют ее «копенгагенской интерпретацией». Понятие это не слишком определенное. Сюда относят идеи, высказывавшиеся Бором, Гайзенбергом, фон Нейманом, Паули и другими, хотя они говорили не одно и то же. Сам термин появился только в конце 1950-х гг., когда Гайзенберг – отчасти в поисках нового единства после Второй мировой войны – стал подчеркивать общность взглядов, разделявшихся им и его коллегами из разных стран в довоенные времена. Сейчас он (термин) в первую очередь ассоциируется с постулированием неквантовости измерительных приборов, а также с коллапсом волновой функции (хотя живший и работавший в Копенгагене Бор никогда о коллапсе не говорил!). Чтобы не застревать в исторических изысканиях и разъяснениях, в последнее время часто говорят о «квантовой механике из учебника» (
В копенгагенской интерпретации совершенно особая роль отведена измерительным приборам. А поскольку узнавать хоть что-то о ненаблюдаемых квантовых объектах мы можем только с помощью привычных нам макроскопических приборов, требуется отдельно оговаривать независимое существование классических, т. е. не квантовых, объектов (игнорируя при этом, что они сложены из квантовых составных частей). Иногда говорят о «разделе Гайзенберга» – границе применимости квантовой механики, проходящей где-то внутри вещей. По эту сторону – привычный нам классический мир, а по другую все квантовое. Такая граница, однако, никак не определена физически и носит достаточно декларативный характер; проводить ее можно на различных масштабах по пути от квантового мира до нашего макроскопического, что делает ее в немалой степени умозрительной – но тем не менее необходимой, коль скоро постулируется одновременное существование и квантовых, и классических объектов. Так или иначе, получается, что для придания смысла квантовому миру в «копенгагене» требуется