Читаем Стратегические игры полностью

Проанализировав большой объем данных, предоставленных профессиональными футбольными лигами Европы, Игнасио Уэрта составил таблицу выигрышей, соответствующих средней вероятности успешных ударов бьющего игрока (рис. 7.12)[107]. Поскольку в эти данные включены показатели бьющих игроков как с правой, так и с левой ноги, а значит, у них разное естественное направление удара, здесь естественной считается стратегия «направо». (Игроки, выполняющие пенальти, обычно бьют по мячу внутренней стороной стопы. Для игрока, бьющего с правой ноги, естественным является удар направо от вратаря, а с левой — удар налево от вратаря.) Каждый игрок располагает двумя вариантами стратегий — «налево» и «направо». Когда вратарь выбирает стратегию «направо», это означает, что он будет прикрывать естественное направление удара бьющего игрока.


Рис. 7.12. Вероятности успешного выполнения пенальти в европейских высших лигах


Воспользовавшись свойством безразличия соперника, можно легко определить, что бьющий игрок должен выбирать стратегию «налево» в 38,3 % случаев, а стратегию «направо» в 61,7 % случаев. Такая комбинация стратегий обеспечивает показатель результативности ударов 79,6 % независимо от того, какую стратегию выберет вратарь. Вратарь, со своей стороны, должен выбирать стратегии «налево» и «направо» в 41,7 и 58,3 процентах случаев соответственно; эта комбинация стратегий позволит ему удержать показатель результативности ударов бьющего игрока на уровне 79,6 %.

Что же происходит на самом деле? Игроки, выполняющие пенальти, применяли стратегию «налево» в 40,0 % случаев, а вратари — в 41,3 % случаев. Эти показатели максимально близки к теоретическим прогнозам. Выбранные комбинации стратегий почти полностью защищены от использования соперником в своих интересах. Смешанная стратегия бьющего игрока обеспечивает показатель результативности ударов 79 % против стратегии вратаря «налево» и 80 % против стратегии вратаря «направо». Смешанная стратегия вратаря удерживает показатель результативности бьющих игроков на уровне 79,3 % при выборе ими стратегии «налево», а при тратегии «направо» в 79,7 % случаев.

В ранее опубликованной работе Пьер-Андре Кьяппори, Тимоти Гроусклоуз и Стивен Левитт использовали аналогичные данные и получили аналогичные результаты[108]. Кроме того, они проанализировали всю последовательность выбора стратегий каждым игроком, бьющим пенальти, и каждым вратарем и не нашли случаев чрезмерного чередования. Это можно объяснить тем, что большинство одиннадцатиметровых штрафных ударов представляют собой единичные события, происходящие на протяжении многих матчей, в отличие от многократно повторяющихся розыгрышей очка в теннисе, поэтому в случае пенальти игроки чаще не учитывают то, что происходило во время предыдущих пенальти. Тем не менее все эти данные говорят о том, что действия игроков во время выполнения пенальти в футболе даже ближе к истинному смешиванию стратегий, чем в игре «подача — возврат подачи» в теннисе.

При столь убедительном эмпирическом подтверждении теории было бы резонно спросить, эффективны ли навыки смешивания стратегий, приобретенные игроками в футболе, в других игровых контекстах. Результаты одного исследования подтвердили, что да (испанские профессиональные футболисты играли в точном соответствии с равновесными прогнозами во время лабораторных экспериментов в матричных играх с нулевой суммой два на два и четыре на четыре). Тем не менее в ходе другого исследования воспроизвести эти результаты не удалось. В его рамках анализировались показатели игроков американской Высшей лиги футбола, а также участников Мировой серии покера (у которых, как говорилось в разделе 8, также есть профессиональные причины для предотвращения использования их действий соперниками с выгодой для себя посредством смешивания стратегий) и было установлено, что поведение профессиональных игроков во время абстрактных матричных игр так же далеко от равновесия, как и поведение студентов. Как и в случае исследований с участием профессиональных шахматистов, о которых шла речь в главе 3, при наличии опыта профессиональные игроки смешивают стратегии в соответствии с теорией равновесия в своей профессиональной сфере, но этот опыт не приводит их автоматически к равновесию в новых и незнакомых играх[109].

Б. Игры с ненулевой суммой
Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература