Читаем Стратегические игры полностью

d) После того как Джеймс и Дин несколько недель не играли в вариант игры в труса, описанный в пункте с, они договариваются сыграть снова. Однако к этому времени оба совершенно забывают, какое равновесие Нэша в чистых стратегиях разыгрывали в последний раз, и ни один из них этого не осознает, пока не взревут двигатели автомобилей перед самым началом игры. Вместо того чтобы играть в соответствии с равновесием Нэша в чистых стратегиях, каждый из них подбрасывает монету, чтобы решить, какую стратегию выбрать. Чему равен ожидаемый выигрыш Джеймса и Дина, если каждый из них смешивает стратегии в пропорции 50 на 50 таким способом? Как он соотносится с ожидаемыми выигрышами в случае равновесной комбинации стратегий? Объясните, почему эти выигрыши остаются неизменными или отличаются от выигрышей, вычисленных в пункте с.

S7. В разделе 2.Б продемонстрировано, как построить график кривых наилучших ответов в игре с розыгрышем очка в теннисе. В разделе 4.Б отмечено, что при наличии множества равновесий их можно определить по пересечениям кривых наилучших ответов. Для игры «битва полов», представленной на рис. 4.12 в главе 4, постройте графики наилучших ответов Гарри и Салли на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша.

S8. Рассмотрите следующую игру:



a) При каких значениях x в этой игре есть единственное равновесие Нэша? Найдите его.

b) При каких значениях x в этой игре есть равновесие Нэша в смешанных стратегиях? С какой вероятностью, выраженной через x, каждый игрок будет выбирать стратегию «да» в равновесии в смешанных стратегиях?

c) Можно ли назвать эту игру при значениях x, найденных в пункте а, примером игры в доверие, игры в труса или игры наподобие тенниса? Обоснуйте свой ответ.

d) Пусть x = 3. Постройте график кривых наилучших ответов Ровены и Колина на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша в чистых и смешанных стратегиях.

e) Пусть x = 1. Постройте график кривых наилучших ответов Ровены и Колина на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша в чистых и смешанных стратегиях.

S9. Рассмотрите следующую игру:



a) Постройте график ожидаемых выигрышей от каждой из стратегий профессора Плама как функции р-комбинации миссис Пикок.

b) При каком диапазоне значений p стратегия «револьвер» обеспечивает профессору Пламу более высокий ожидаемый выигрыш, чем стратегия «нож»?

c) При каком диапазоне значений p стратегия «револьвер» обеспечивает ему более высокий ожидаемый выигрыш, чем стратегия «гаечный ключ»?

d) Какие чистые стратегии профессор Плам использует в своей равновесной комбинации? Почему?

e) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

S10. Многие из вас наверняка знакомы с детской игрой «камень, ножницы, бумага». В ней два игрока одновременно выбирают свой «камень», «ножницы» или «бумагу», складывая ладони так, чтобы их форма напоминала один из этих вариантов. Счет в игре ведется следующим образом. Игрок, выбравший «ножницы», побеждает игрока, выбравшего «бумагу» (потому что ножницы режут бумагу). Игрок, выбравший «бумагу», побеждает игрока, выбравшего «камень» (поскольку бумага обертывает камень). Игрок, выбравший «камень», побеждает игрока, выбравшего «ножницы» (потому что камень разбивает ножницы). Допустим, в каждом отдельном розыгрыше игры на кону стоят 10 очков. Возможные исходы игры представлены в следующей таблице выигрышей:



a) Найдите равновесие в смешанных стратегиях в этой игре.

b) Предположим, Лиза объявила, что применит комбинацию стратегий, в которой вероятность выбора стратегии «камень» составляет 40 %, «ножницы» — 30 % и «бумага» — 30 %. Определите наилучший ответ Барта на такой выбор стратегий. Объясните, почему ваш ответ резонный, основываясь на ваших знаниях о смешанных стратегиях.

S11. Вспомните игру между торговцами мороженым на пляже из упражнения U6 в главе 6. В ней мы нашли два асимметричных равновесия в чистых стратегиях. В данной игре есть также симметричное равновесие в смешанных стратегиях.

a) Составьте таблицу этой игры пять на пять.

b) Исключите доминируемые стратегии и объясните, почему их не следует применять в равновесии.

c) Используйте ответ, полученный в части (b), чтобы найти равновесие в смешанных стратегиях в этой игре.

S12. Допустим, в игре в пенальти из раздела 7.А данной главы в распоряжении бьющего игрока шесть стратегий: бить высоко и налево (ВЛ), низко и налево (НЛ), высоко и в центр (ВЦ), низко и в центр (НЦ), высоко и направо (ВП), а также низко и направо (НП). Вратарь по-прежнему располагает тремя стратегиями: двигаться налево от бьющего игрока (Л), двигаться направо (П) и оставаться в центре (Ц). Проценты успешных действий игроков приведены в следующей таблице:



Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература