Читаем Стратегические игры полностью

U12. Упрямые Джеймс и Дин снова играют в более опасный вариант игры в труса (см. упражнение S6). Они заметили, что их выигрыш («храбрец») зависит от количества зрителей. Чем их больше, тем больше славы и похвал получает тот, кто едет прямо. Безусловно, в случае меньшего количества зрителей наблюдается противоположный эффект. Пусть k > 0 — это выигрыш игрока, который показал себя «храбрецом». Теперь эту игру можно представить так:



a) С какой вероятностью, выраженной через k, каждый водитель выбирает стратегию «свернуть» в равновесии Нэша в смешанных стратегиях? Применяют ли Джеймс и Дин эту стратегию чаще или реже по мере увеличения значения k?

b) Чему равна ожидаемая ценность игры для каждого игрока, выраженная через k, в равновесии Нэша в смешанных стратегиях, найденном в пункте а?

c) При каком значении k и Джемс, и Дин смешивают в данном равновесии стратегии в соотношении 50 на 50?

d) Насколько большим должно быть значение k, чтобы средний выигрыш был положительным при схеме чередования, о которой шла речь в пункте с упражнения S6?

U13 (дополнительное упражнение). Вспомните игру из упражнения S11 в главе 4, где Ларри, Мо и Керли могут покупать билеты с возможностью получить приз в размере 30 долларов. Мы нашли в ней шесть равновесий Нэша в чистых стратегиях. В данном упражнении вам предстоит найти симметричное равновесие в смешанных стратегиях.

a) Исключите слабо доминируемую стратегию каждого игрока. Объясните, почему игрок никогда не использовал бы ее в своей равновесной комбинации стратегий.

b) Найдите равновесие в смешанных стратегиях.

U14 (дополнительное упражнение). В упражнении S4 и упражнении U4 показано, что в играх с нулевой суммой, таких как соперничество Эверт и Навратиловой в теннисе, изменение выигрышей одного игрока иногда приводит к неожиданным или парадоксальным изменениям в равновесной комбинации стратегий. Но что происходит при этом с ожидаемой ценностью игры? Рассмотрим следующую общую форму игры с нулевой суммой с участием двух игроков:



Предположим, в этой игре нет равновесия Нэша в чистых стратегиях, а значения a, b, c и d больше или равны 0. Может ли увеличение значения одной из переменных a, b, c и d обусловить снижение ценности игры для Ровены? Если нет, докажите это. Если да, приведите пример.

Приложение. Вероятность и ожидаемая полезность

При вычислении ожидаемых выигрышей и равновесий в смешанных стратегиях в данной главе мы должны были выполнить ряд простых действий с вероятностями. Для этого существует несколько несложных правил. Возможно, многие из вас с ними знакомы, но мы дадим здесь краткое описание и объяснение основных понятий, чтобы вы могли в случае необходимости восстановить или восполнить свои знания. Кроме того, мы также покажем, как вычислить математическое ожидание случайных числовых величин.

Основные алгебраические действия с вероятностями

Базовое интуитивное представление вероятности наступления того или иного события формируется в процессе размышлений о частоте, с которой оно происходит случайно в рамках более крупного множества возможных событий. Как правило, любой элемент более крупного множества столь же вероятен, как и любой другой элемент. Следовательно, поиск вероятности интересующего нас события сводится к подсчету числа элементов, соответствующих этому событию, и их делению на общее количество элементов в крупном множестве[111].

Например, в любой стандартной колоде из 52 игральных карт четыре масти (трефы, бубны, червы и пики), по 13 карт разного достоинства в каждой: сначала туз, затем номерные карты от 2 до 10 и фигурные карты — валет, дама, король. Мы можем задать массу разных вопросов о том, с какой вероятностью из данной колоды карт можно извлечь карту определенной масти или достоинства (или масти и достоинства): с какой вероятностью можно вытащить карту пиковой масти? А черную карту? А десятку? А даму пик? И так далее. Чтобы ответить на эти вопросы, необходимо обладать определенными знаниями о вычислении вероятностей и о действиях с ними. Если бы у нас было две колоды карт (одна с синими рубашками, а другая с зелеными), мы могли бы задать еще более сложные вопросы («С какой вероятностью можно вытащить по одной карте из каждой колоды так, чтобы обе карты оказались валетом бубен?»), но для получения ответа на них по-прежнему использовали бы все те же алгебраические действия с вероятностями.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература