Обобщим наши предыдущие вычисления. Если разделить множество событий Х
на ряд подмножеств Y, Z, …, которые не перекрываются (на языке математики они называются непересекающимися), то сумма вероятностей наступления каждого подмножества равна вероятности полного множества событий; если полное множество событий включает в себя все возможные исходы, то его вероятность равна 1. Иными словами, если наступление события Х требует наступления каждого из нескольких непересекающихся событий, то вероятность Х равна сумме вероятностей отдельных событий Y, Z, …. Обозначив вероятность наступления Х как Prob(X) и запомнив предостережения в отношении Х (это событие требует наступления каждого из событий), а также в отношении Y, Z, … (эти события должны быть непересекающимися), можем записать правило сложения вероятностей в математических обозначениях как Prob(X) = Prob(Y) + Prob(Z) + ….Упражнение.
С помощью правила сложения вероятностей найдите вероятность вытаскивания двух одинаковых карт из двух колод (по одной из каждой колоды).Б. Правило умножения вероятностей
Теперь давайте поставим вопрос так: какова вероятность того, что две извлеченные (по одной из каждой колоды) нами карты окажутся пиковой масти? Это событие наступит в случае, если мы вытащим пику из синей колоды и
пику из зеленой. Переход от «или» к «и» в формулировке ответа на вопрос указывает на переход от математической операции сложения к умножению. Таким образом, вероятность вытащить две пики (по одной из каждой колоды) равна произведению вероятностей вытягивания одной пики из каждой колоды, или (13/52) × (13/52) = 1/16 = 0,0625, или 6,25 %. Как и следовало ожидать, мы получим две пики с гораздо меньшей вероятностью, чем одну пику в предыдущем разделе. (Всегда проверяйте, соответствуют ли ваши расчеты интуитивной оценке исхода игры.)Подобно тому как правило сложения требует, чтобы события были непересекающимися, правило умножения требует, чтобы они были независимыми: если разделить множество событий X
на ряд подмножеств Y, Z, …, эти подмножества будут независимыми, если наступление одного из них не влияет на вероятность другого. Наши события (карта пиковой масти из синей колоды и карта пиковой масти из зеленой) удовлетворяют этому условию; иными словами, вытягивание пики из синей колоды не приводит к изменению вероятности вытягивания пики из зеленой колоды. Однако если бы мы извлекли обе карты из одной колоды, то после вытаскивания пики (с вероятностью 13/52) вероятность вытащить еще одну пику больше не составляла бы 13/52 (на самом деле она равнялась бы 12/51); следовательно, такие события, как вытаскивание одной, а затем второй карты пиковой масти из одной колоды, не относятся к независимым событиям.Строгая формулировка правила умножения вероятностей
гласит, что если наступление события X требует одновременного наступления всего ряда независимых событий Y, Z, …, то вероятность наступления события X равна произведению вероятности наступления отдельных событий Y, Z, …: Prob(X) = Prob(Y) × Prob(Z) × ….Упражнение.
С помощью правила умножения вероятностей найдите вероятность вытаскивания двух карт (по одной из каждой колоды), среди которых была бы одна красная карта из синей колоды и одна фигурная из зеленой колоды.В. Математическое ожидание
Если количественная величина (такая как денежный выигрыш или количество атмосферных осадков) носит случайный характер и может принимать одно из n
возможных значений X1, X2, …, Xn с соответствующими вероятностями p1, p2, …, pn, то математическое ожидание представляет собой взвешенное по вероятности среднее всех возможных значений этой величины: p1X1 + p2X2 + … + pnXn. Например, предположим, вы заключаете пари на подбрасывание двух монет. Если выпадут два орла, вы получите 5 долларов, если один орел и одна решка — 1 доллар, а если две решки, то ничего. Воспользовавшись правилами выполнения действий с вероятностями, о которых шла речь выше, вы можете определить, что вероятность наступления этих событий составляет 0,25, 0,50 и 0,25 соответственно. Следовательно, ваш ожидаемый выигрыш составит (0,25 × 5) + (0,50 × 1) + (0,25 × 0) = 1,75 доллара.