Читаем Стратегические игры полностью

a) Если Анна выберет 1 (выбросит один палец) с вероятностью p, каков ожидаемый выигрыш Брюса от выбора 1, выраженный через p? Чему равен его ожидаемый выигрыш от выбора 2?

b) При каком уровне p Брюсу будет безразлично, какую стратегию выбрать — 1 или 2?

c) Если Брюс сыграет 1 с вероятностью q, при каком уровне q Анне будет безразлично, какую стратегию выбрать — 1 или 2?

d) Запишите равновесие в смешанных стратегиях этой игры. Чему равен в ней ожидаемый выигрыш каждого игрока?

U4. Вернемся снова к соперничеству между теннисистками Эверт и Навратиловой, о котором шла речь в разделе 2.А. Через много месяцев они опять встречаются на очередном турнире. Эверт восстановилась после травмы (см. упражнение S4), а Навратилова в это же время усердно улучшала навыки защиты против подач по линии. Ниже представлена таблица выигрышей в этой игре.



a) Найдите равновесную комбинацию каждого игрока в этой игре.

b) Что произошло с р-комбинацией Эверт по сравнению с игрой, представленной в разделе 2.А? Почему?

c) Какова ожидаемая ценность данной игры для Эверт? Почему она отличается от ожидаемой ценности первоначальной игры, рассматриваемой в разделе 2.А?

U5. В разделе 4.А данной главы шла речь о смешивании стратегий в контексте «битвы полов» между Гарри и Салли.

a) Как думаете, что произойдет с равновесными значениями p и q, вычисленными в этой главе, если Салли решит, что Local Latte ей действительно нравится гораздо больше, чем Starbucks, поэтому теперь в ячейке Local Latte, Local Latte указаны выигрыши 1, 3? Объясните логику своих рассуждений.

b) Найдите новые равновесные значения p и q. Чем они отличаются от равновесных значений p и q в исходной игре?

c) Определите ожидаемый выигрыш каждого игрока в случае нового равновесия в смешанных стратегиях.

d) Как вы считаете, могли бы Гарри и Салли разыграть равновесие в смешанных стратегиях в новой версии игры? Обоснуйте свой ответ.

U6. Рассмотрим следующий вариант игры в труса, в котором выигрыш Джеймса от стратегии «ехать прямо» при условии, что Дин выбирает стратегию «свернуть», равен 2, а не 1.



a) Найдите равновесие в смешанных стратегиях в этой игре, в том числе ожидаемые выигрыши игроков.

b) Сравните полученные результаты с результатами в исходной игре в разделе 4.Б данной главы. Вероятность того, что Дин выберет «ехать прямо», повысилась? А как насчет вероятности того, что Джеймс «поедет прямо»?

c) Что произошло с ожидаемыми выигрышами двух игроков? Эти различия между равновесными исходами парадоксальны с точки зрения новой структуры выигрышей? Объясните, как можно трактовать ваши выводы в контексте принципа безразличия соперника.

U7. Постройте графики наилучших ответов Джеймса и Дина для игры в труса, представленной на рис. 4.13 в главе 4, на координатной плоскости с осями p и q. Обозначьте все равновесия Нэша.

U8. a) Найдите все равновесия Нэша в чистых стратегиях в следующей игре:



b) Найдите равновесие в смешанных стратегиях в этой игре. Чему равны ожидаемые выигрыши игроков в этом равновесии?

U9. Рассмотрите измененную версию игры из упражнения S9.



a) Постройте график ожидаемых выигрышей от каждой из стратегий профессора Плама как функции р-комбинации миссис Пикок.

b) Какие чистые стратегии использует профессор Плам в своей равновесной комбинации? Почему?

c) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

d) Обратите внимание, что данная версия игры незначительно отличается от игры, представленной в упражнении S9. В чем различие между этими двумя играми? Объясните, почему интуиция подсказывает вам, что равновесный исход игры изменился по сравнению с исходом игры в упражнении S9.

U10. Рассмотрите измененную версию игры «камень, ножницы, бумага», в которой Барт получает приз, когда выигрывает, применив стратегию «камень». Если Барт выберет «камень», а Лиза — «ножницы», он получит в два раза больше очков по сравнению с тем, что оба получили бы при любом ином подходе. Новая матрица выигрышей выглядит так:



a) Найдите равновесие в смешанных стратегиях в этой версии игры.

b) Сравните полученный результат с равновесием в смешанных стратегиях из упражнения S10. Как вы можете объяснить различия между ними?

U11. Рассмотрите следующую игру.



a) Есть ли в ней равновесие в чистых стратегиях? Если да, то какое?

b) Найдите равновесие в смешанных стратегиях в этой игре.

c) В действительности в этой игре два равновесия в смешанных стратегиях. Найдите то, которое вы не нашли в пункте b. (Подсказка: в одном из этих равновесий один из игроков выбирает смешанную стратегию, тогда как другой — чистую.)

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг