Читаем Стратегические игры полностью

Ваша задача — подтвердить, что в равновесии в смешанных стратегиях данной игры вратарь использует каждую из стратегий Л и П в 42,2 % случаев, а стратегию Ц в 15,6 % случаев, тогда как бьющий игрок применяет каждую из стратегий НЛ и НП в 37,8 % случаев, а стратегию ВЦ в 24,4 % случаев.

a) С учетом предложенной смешанной стратегии вратаря вычислите ожидаемый выигрыш бьющего игрока от каждой из его шести чистых стратегий и с учетом предложенной смешанной стратегии бьющего игрока ожидаемый выигрыш вратаря от каждой из его трех стратегий. (Для простоты используйте только три значащие цифры.)

b) На основании ответа, полученного в пункте а, объясните, почему смешанная стратегия вратаря — наилучший ответ на предложенную смешанную стратегию бьющего игрока и наоборот.

c) Воспользовавшись полученными выше ответами, объясните, почему предложенные стратегии образуют равновесие Нэша.

d) Вычислите равновесный выигрыш игрока, выполняющего пенальти.

S13 (дополнительное упражнение). В разделе 5.Б в контексте игры в доверие мы показали, что изменение выигрышей Салли не меняет пропорций, в которых она смешивает чистые стратегии в равновесии, — ее равновесная комбинация зависит только от выигрышей Гарри. В данном упражнении вам предстоит доказать, что это общий результат для всех равновесий в смешанных стратегиях в играх два на два. Рассмотрим общий случай игры с ненулевой суммой два на два, таблица выигрышей которой представлена ниже.



a) Предположим, в этой игре есть равновесие в смешанных стратегиях. Определите вероятность того, что Ровена выберет в равновесии стратегию «вверх» как функцию приведенных в таблице выигрышей.

b) Определите вероятность того, что Колин выберет стратегию «налево» в равновесии.

c) Объясните, как полученные вами результаты показывают, что равновесные комбинации каждого игрока зависят только от выигрышей другого игрока.

d) Каким условиям должны удовлетворять выигрыши, чтобы в данной игре действительно присутствовало равновесие в смешанных стратегиях?

S14 (дополнительное упражнение). Вспомните упражнение S13 из главы 4, основанное на сцене в баре из фильма «Игры разума». Здесь мы проанализируем равновесия в смешанных стратегиях в этой игре, когда в нее играют n > 2 молодых людей.

a) Начните с рассмотрения симметричного случая, когда каждый из n молодых людей самостоятельно пытается привлечь внимание одинокой блондинки с вероятностью P, зависящей от условия, согласно которому каждому молодому человеку должно быть безразлично, какую из двух чистых стратегий выбрать — «блондинка» или «брюнетка», с учетом того, что все остальные игроки смешивают стратегии. Какое условие гарантирует безразличие каждого игрока? Найдите равновесное значение P в этой игре.

b) В данной игре есть также ряд асимметричных равновесий в смешанных стратегиях. В них каждый из m < n молодых людей пытается привлечь внимание блондинки с вероятностью Q, а остальные n — m игроков добиваются расположения брюнеток. Какое условие гарантирует безразличие m молодых людей с учетом действий остальных игроков? Какое условие должно выполняться, чтобы оставшиеся n — m игроков не отказались от применения чистой стратегии выбора брюнетки? Чему равно равновесное значение Q в случае асимметричного равновесия?

Упражнения без решений

U1. В американском футболе команда нападения может либо совершать пробежку с мячом, либо делать пас, тогда как команда защиты может ожидать (и подготовиться) либо пробежку, либо пас. Предположим, ожидаемые выигрыши обеих команд (в ярдах) за каждый отдельно взятый даун составляют:



a) Докажите, что в этой игре нет равновесия Нэша в чистых стратегиях.

b) Найдите в ней единственное равновесие Нэша в смешанных стратегиях.

c) Объясните, почему комбинация стратегий команды нападения отличается от комбинации стратегий команды защиты.

d) Сколько ярдов предположительно может набрать команда нападения в случае равновесия?

U2. Накануне крайнего срока сдачи работ профессор получает электронное письмо от одного из студентов, который утверждает, что застрял с решением одной из задач, просидев над ней больше часа. Профессор не против помочь студенту, если тот действительно работает, но отказал бы в помощи, зная, что тот просто пытается выудить подсказку. Учитывая время получения письма, профессор мог бы просто сделать вид, что прочитал его значительно позже. Очевидно, что студент предпочел бы получить помощь независимо от того, решал он задачу или нет. Но если так ее и не дождется, то предпочтет не усугублять проблему и приступит к работе, поскольку задачи необходимо сдать завтра. Предположим, участники этой игры получат следующие выигрыши:



a) Найдите равновесие Нэша в смешанных стратегиях в этой игре.

b) Вычислите ожидаемый выигрыш каждого из игроков.

U3. В упражнении S12 в главе 4 описывается игра «чет или нечет», в которой нет равновесия Нэша в чистых стратегиях. Однако в ней есть равновесие в смешанных стратегиях.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература