Читаем Стратегические игры полностью

a) Если присяжные проголосуют честно (то есть в соответствии со своими личными оценками виновности подсудимого), то когда вердикт «невиновен» будет выноситься чаще: в случае применения принципа единогласия или принципа простого большинства, когда подсудимый был бы осужден, если бы за его виновность проголосовали семь присяжных? Обоснуйте ответ. Что мы могли бы назвать «проклятием присяжного» в данной ситуации?

b) Теперь рассмотрим ситуацию, в которой каждый присяжный голосует стратегически, принимая во внимание возможные проблемы в связи с проклятием присяжного и используя все инструменты логического вывода информации, которые мы изучили. В каком случае присяжные более склонны голосовать по принципу единогласия за вариант «виновен» — когда они будут голосовать честно или стратегически? Обоснуйте свой вывод.

c) Как думаете, стратегическое голосование с учетом проклятия присяжного повлечет за собой слишком много вердиктов «виновен»? Почему да или почему нет?

U5 (дополнительное упражнение). Это упражнение продолжает упражнение S4; в нем рассматривается общий случай, когда n может принимать любое положительное целое значение. Предположим, функция равновесного предложения цены при наличии n покупателей выглядит так: b(ν) = ν(n — 1)/n. При n = 2 имеем случай, анализ которого представлен в упражнении S4: каждый участник торгов предлагает цену, равную половине своей оценки выставленного на продажу объекта. Если в торгах участвуют девять покупателей (n = 9), то каждый из них должен предлагать 9/10 своей оценки, и т. д.

a) Теперь против вас играет n — 1 других покупателей, каждый из которых использует функцию предложения цены b(v) = v(n — 1)/n. В данный момент сфокусируемся на одном из соперников. Чему равна вероятность того, что он предложит цену меньше 0,1, 0,4 или 0,6?

b) На основании полученных выше результатов найдите выражение для вероятности того, что другой участник торгов предложит цену, которая меньше вашей ставки b.

c) Не забывайте, что в торгах участвуют еще n — 1 покупателей, каждый из которых использует ту же функцию предложения цены. Какова вероятность того, что ваша ставка b больше всех остальных ставок? Другими словами, найдите выражение для вероятности того, что вы выиграете аукцион, как функции вашей цены предложения b.

d) На основании этого результата найдите выражение для ожидаемой прибыли, если ваша оценка составляет v, а цена предложения — b.

e) Какое значение b максимизирует вашу ожидаемую прибыль? Оно должно быть функцией от вашего значения v.

f) На основании полученных результатов обоснуйте вывод о том, что равновесие Нэша может быть достигнуто в случае, если действия всех n участников торгов будут соответствовать функции b(ν) = ν(n — 1)/n.

Глава 17. Переговоры

* * *

Люди ведут переговоры на протяжении всей своей жизни. Будучи детьми, они договариваются делиться игрушками и играть в игры со сверстниками. Став взрослыми и создав семью, договариваются о распределении домашних обязанностей, воспитании детей и коррективах, которые должен внести каждый в свою жизнь ради карьеры другого. Покупатели и продавцы торгуются о цене, работники и руководители договариваются о заработной плате. Страны ведут переговоры о политике взаимной либерализации торговли; сверхдержавы обсуждают взаимное сокращение вооружений. А двум первым авторам этой книги пришлось договариваться (в целом весьма дружелюбно), что в нее включать или не включать, как структурировать подачу материала и т. д. Для того чтобы получить приемлемый результат в ходе переговоров, их участники должны разработать эффективные стратегии. В данной главе описываются и подробно анализируются некоторые из таких базовых идей и стратегий.

У всех переговорных ситуаций есть две общие черты. Во-первых, суммарный выигрыш, который стороны переговоров могут обеспечить в результате достижения консенсуса, должен быть больше индивидуальных выигрышей, которые они могли бы получить по отдельности, то есть целое должно превышать сумму составляющих. При отсутствии такой избыточной ценности, или «излишка», проведение переговоров бессмысленно. Если двое детей, намеревающихся играть вместе, не видят чистой выгоды от получения доступа к большему количеству игрушек или от совместной игры, то каждому из них лучше забрать свои игрушки и играть самому. Мир полон неопределенности, поэтому ожидаемая выгода может не материализоваться. Но в процессе переговоров стороны должны по крайней мере рассчитывать на некоторые выгоды, которые можно извлечь из достигнутой договоренности: когда Фауст согласился продать душу дьяволу, он считал, что преимущества от обретенных им знаний и власти заслуживают той цены, которую ему пришлось в итоге заплатить.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг