Читаем Стратегические игры полностью

Формула Нэша ничего не говорит о том, как может быть получено это решение. И такая расплывчатость — ее преимущество, поскольку ее можно использовать для описания результатов множества разных теорий с учетом множества разных подходов.

На простейшем уровне формулу Нэша можно рассматривать как краткое описание результата переговорного процесса, который мы не оговаривали в деталях. Тогда h и k могут обозначать относительную силу переговорных позиций сторон. Такое сокращенное описание представляет собой компромисс; более полная теория должна объяснять, откуда берется сила переговорных позиций и почему у одной стороны она может быть больше, чем у другой. Мы сделаем это в конкретном контексте ниже в данной главе, а пока эта формула дает нам хороший инструмент, отображая все без исключения источники силы переговорных позиций в показателях h и k.

Сам Нэш придерживался иного подхода, отличающегося от подхода к теории игр, используемого нами до сих пор в данной книге. Поэтому его подход заслуживает более тщательного объяснения. Во всех уже изученных нами играх участники выбирали и разыгрывали свои стратегии отдельно друг от друга. Мы искали равновесия, в которых стратегия каждого игрока отвечала его собственным интересам с учетом стратегий других игроков. Порой такие исходы были весьма неблагоприятны для некоторых, а то и всех участников игры, чему наглядный пример — дилемма заключенных. Тогда у игроков была возможность собраться вместе и договориться следовать определенной стратегии. Но в нашей системе у них не было никакого способа проконтролировать выполнение достигнутого соглашения. Договорившись, игроки расходились, а когда наступала их очередь действовать, они делали то, что максимально отвечало их собственным интересам. Под влиянием столь разрозненных стремлений игроки нарушали соглашение о совместных действиях. Правда, в ходе анализа повторяющихся игр в главе 10 мы обнаружили, что скрытая угроза разрыва длительных отношений способна поддерживать выполнение договоренности, а в главе 8 допустили возможность коммуникации посредством подачи сигналов. Однако значение имело именно индивидуальное действие, а любая взаимная выгода достигалась только тогда, когда ей не грозило пасть жертвой эгоистичности разрозненных действий отдельных игроков. В главе 2 мы назвали такой подход к теории игр некооперативным, подчеркнув, что этот термин указывает на способ выполнения действий, а не на то, станет ли их результат приемлемым для всех игроков. Опять же, важно то, что любое совместное благо должно представлять равновесный результат разрозненных действий в подобных играх.

Но что если совместные действия все же возможны? Например, участники игры могут совершить их сразу же после достижения договоренностей, в присутствии друг друга. Или могут делегировать реализацию соглашения нейтральной третьей стороне или посреднику. Другими словами, игра может быть кооперативной (снова в смысле совместных действий). Нэш моделировал переговорный процесс именно в виде кооперативной игры.

Рассуждения коллектива, планирующего реализовать совместное соглашение посредством совместных действий, могут существенно отличаться от рассуждений совокупности отдельных людей, которые знают, что взаимодействуют стратегически, но совершают при этом некооперативные действия. В то время как члены второй группы будут думать в категориях равновесия, а затем либо радоваться, либо огорчаться, в зависимости от удовлетворенности полученными результатами, члены первой группы сначала подумают о том, какой результат будет приемлемым, а затем посмотрят, как его достичь. Иными словами, теория определяет исход кооперативной игры с точки зрения ряда общих принципов или свойств, которые считает разумными ее автор.

Нэш сформулировал ряд таких принципов для переговоров и доказал, что они подразумевают единственный исход. Вот их примерное описание: 1) этот исход должен быть инвариантным, если шкала измерения выигрышей меняется линейно; 2) он должен быть эффективным; 3) на него не повлияет сокращение множества возможных вариантов путем удаления тех, которые в любом случае не будут выбраны.

Первый принцип согласуется с теорией ожидаемой полезности, которую мы вкратце рассматривали в приложении к главе 8. Там мы увидели, что нелинейная шкала выигрышей отображает изменения отношения игрока к риску и реальное изменение линии поведения: вогнутая шкала подразумевает нерасположенность к риску, а выгнутая — склонность к риску. Линейная шкала, будучи промежуточными вариантом, отображает нейтральность к риску. Следовательно, линейное изменение шкалы выигрышей не влияет на оценку ожидаемых выигрышей и не сказывается на полученных результатах.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг