Читаем Стратегические игры полностью

Вторая важная общая черта переговоров вытекает из первой: переговоры не игра с нулевой суммой. При наличии излишка они сводятся к его разделению. Каждая сторона переговоров пытается выторговать больше для себя и оставить меньше всем остальным. На первый взгляд эта ситуация может показаться игрой с нулевой суммой, но здесь существует опасность того, что, если договоренность не будет достигнута, ни одна сторона не получит никаких излишков. Именно эта обоюдно пагубная альтернатива, а также стремление обеих сторон избежать ее создают почву для угроз (явных и скрытых), которые и делают переговоры вопросом стратегии.

До появления теории игр переговоры один на один считались трудной, а порой неразрешимой задачей. Наблюдение совершенно разных результатов в примерно схожих ситуациях подтверждало эту точку зрения. Теоретики не могли на системном уровне понять, почему одна сторона переговоров получает больше другой, и относили это на счет расплывчатых и необъяснимых различий в так называемой силе переговорной позиции.

Даже элементарная теория равновесия Нэша не позволяла продвинуться дальше. Предположим, два человека делят между собой 1 доллар. Давайте построим игру так, чтобы каждый из них объявлял о том, сколько он хотел бы получить. Ходы в игре делаются одновременно. Если объявленные игроками числа x и y в сумме не больше 1, каждый получает то, что огласил. Если сумма этих чисел больше 1, игроки не получают ничего. Стало быть, любая пара (x, y), дающая в сумме 1, образует в этой игре равновесие Нэша: с учетом намерений, анонсированных другим игроком, каждый игрок может извлечь для себя выгоду, только придерживаясь собственных заявлений[300].

Дальнейшее развитие теории игр проходило по двум разным направлениям, в каждом из которых использовалась своя логика теоретико-игровых рассуждений. В главе 2 мы провели различие между теорией кооперативных игр, когда игроки выбирают и реализуют свои действия совместными усилиями, и теорией некооперативных игр, когда игроки выбирают и реализуют свои действия по отдельности. В каждом из направлений развития теории переговоров используется один из этих двух подходов. Один подход рассматривает переговоры как кооперативную игру, в которой переговорщики вместе находят и реализуют решение, возможно, с привлечением третьей стороны в качестве третейского судьи. Другой подход рассматривает переговоры как некооперативную игру, в которой переговорщики выбирают стратегии по отдельности и ищут равновесие. Однако, в отличие от приведенного выше простого примера с одновременным объявлением намерений, где равновесие было неопределенным, здесь мы вводим более структурированную игру с одновременными ходами и наличием предложений с обеих сторон, которая приводит к формированию детерминированного равновесия. Обращаем ваше внимание, что, как и в главе 2, терминами «кооперативный» и «некооперативный» обозначаются совместные и разрозненные действия, а не хорошее и плохое поведение или достижение компромисса в отличие от срыва переговоров. Равновесие в некооперативных переговорных играх может повлечь за собой множество компромиссов.

1. Кооперативное решение Нэша

В этом разделе мы проанализируем подход Нэша к переговорам как к кооперативной игре. Сначала представим эту идею в виде простого числового примера, а затем дадим ее более общее алгебраическое описание[301].

А. Числовой пример

Представьте двух предпринимателей из Кремниевой долины, Энди и Билла. Энди выпускает микросхему, которую может продавать любому производителю компьютеров по 900 долларов, а Билл разработал пакет программ, который может стоить 100 долларов. Они знакомятся и, немного пообщавшись, понимают, что их продукты идеально подходят друг к другу и что после незначительной доработки они могут выпускать комплексную систему аппаратного и программного обеспечения стоимостью 3000 долларов на каждый компьютер. Следовательно, объединившись, Энди и Билл могут создать дополнительную стоимость в размере 2000 долларов на единицу продукции и рассчитывают на продажу миллионов таких единиц в год. Единственное препятствие на пути к богатству — как его поделить? 3000 долларов — доход от каждой единицы, какую их часть должен получить Энди и какую Билл?

Главный аргумент Билла, что без его программного обеспечения микросхемы Энди — не более чем груда металла и песка, поэтому Энди должен получить 900 долларов, а сам Билл 2100 долларов. Энди парирует, что без его аппаратного обеспечения программы Билла — не более чем символы на бумаге или магнитные сигналы на диске, поэтому Билл должен получить всего 100 долларов, а остальные 2900 долларов — он, Энди.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг