Наблюдая за этим спором, вы могли бы посоветовать им разделить разницу между собой. Однако это не совсем точный рецепт достижения соглашения. Билл мог бы предложить Энди поровну разделить прибыль с каждой единицы продукции. При такой схеме каждый получит прибыль в размере 1000 долларов, то есть 1100 долларов дохода достанется Биллу и 1900 долларов Энди. Встречное предложение Энди может состоять в том, что каждый должен получить равный процент прибыли на вклад в совместное предприятие. Тогда Энди получит 2700 долларов, а Билл 300 долларов.
Если Энди и Билл ведут переговоры непосредственно между собой, окончательное соглашение зависит от настойчивости или терпения обоих. Если же они попытаются прибегнуть к помощи третейского судьи, то его решение зависит от понимания относительной стоимости аппаратного и программного обеспечения, а также от навыков риторики, которые используют два принципала в процессе представления ему своих аргументов. Для определенности давайте предположим, что третейский судья предлагает разделить прибыль в соотношении 4:1 в пользу Энди, то есть Энди должен получить четыре пятых от излишка, тогда как Билл одну пятую, или Энди должен получить в четыре раза больше, чем Билл. Каким будет фактическое разделение дохода по такой схеме? Допустим, общий доход Энди x
, а Билла — y; тогда прибыль Энди составит (x — 900), а Билла — (y — 100). Решение третейского судьи подразумевает, что прибыль Энди должна в четыре раза превышать прибыль Билла; следовательно, x — 900 = 4(y — 100), или x = 4y + 500. Общий доход обоих предпринимателей равен 3000 долларов, стало быть, должно выполняться равенство x + y = 3000, или x = 3000 — y. В таком случае x = 4y + 500 = 3000 — y, или 5y = 2500, или y = 500, а значит, x = 2500. Такой механизм разделения прибыли обеспечивает Энди 2500 — 900 = 1600 долларов, а Биллу 500–100 = 400 долларов, что равносильно разделению прибыли в соотношении 4:1 в пользу Энди, о котором говорит третейский судья.На основании этих элементарных данных мы выведем алгебраическую формулу, которую вы найдете весьма полезной во многих практических приложениях, а затем перейдем к анализу других факторов, от которых зависят пропорции разделения прибыли в переговорной игре.
Б. Общая теория
Предположим, два участника переговоров, A и Б, пытаются разделить общую величину v
, которую они могут получить, только если договорятся о конкретном способе разделения. Если соглашение не будет достигнуто, А получит a, а Б получит b, причем каждый будет действовать в одиночку или каким-то иным способом вне пределов их отношений. Назовем эти показатели страховочными выигрышами, или, используя терминологию Гарвардского переговорного проекта, их лучшими альтернативами обсуждаемому соглашению (best alternative to a negotiated agreement, BATNA)[302]. Зачастую значения a и b равны нулю, но в более общем плане будем исходить из того, что a + b < v, то есть данное соглашение обеспечивает положительный излишек (v — a — b); в противном случае весь переговорный процесс оказался бы бессмысленным, поскольку каждая сторона просто воспользовалась бы внешней возможностью и получила бы свой BATNA.Рассмотрим следующее правило: каждому игроку необходимо предоставить его BATNA и долю излишка. Допустим, для А доля излишка равна h
, а для Б — k, причем h + k = 1. Выразив x в виде суммы, которую получит в итоге А, а y — в виде суммы, которую получит в итоге Б, имеемx
= a + h(v — a — b) = a(1 — h) + h(v — b), x — a = h(v — a — b),а также
y
= b + k(v — a — b) = b(1 — k) + k(v — a), y — b = k(v — a — b).Мы называем эти выражения формулами Нэша. Еще один способ интерпретировать их сводится к такому утверждению: излишек (v — a — b
) подлежит разделению между двумя участниками переговоров в соотношении h к k, или
или в виде уравнения
Для того чтобы охватить весь излишек, x
и y должны также удовлетворять уравнению x + y = v. Формулы Нэша для x и y — это и есть решения системы последних двух уравнений.Геометрическое представление кооперативного решения Нэша
приведено на рис. 17.1. Страховочный выигрыш, или BATNA, находится в точке P с координатами (a, b). Все точки (x, y), которые делят прибыль между двумя игроками в соотношении h к k, лежат на прямой линии, которая проходит через точку P и имеет наклон k/h; эта наклонная прямая представляет собой график функции y = b + (k/h)(x — a), которую мы вывели ранее. Все точки (x, y), охватывающие весь излишек, лежат на прямой, проходящей через точки (v, 0) и (0, v); эта прямая соответствует второму уравнению, полученному выше, а именно x + y = v. Решение Нэша находится в точке пересечения этих линий, то есть в точке Q. Координаты этой точки — выигрыши сторон после достижения соглашения.
Рис. 17.1.
Решение Нэша для переговорной игры в простейшем виде