Читаем Светлые века. Путешествие в мир средневековой науки полностью

Ректангулус – это максимально упрощенный астрономический инструмент. В предыдущей главе мы узнали, что Сакробоско воспроизводил строение небес с помощью модели, которая напоминала сферическую клетку, – такая сделанная из медных колец конструкция называлась армиллярной сферой. Эти сферы, вплоть до XVI века висевшие в лекционных залах Оксфорда (см. рис. 3.2), служили двум практическим целям. С их помощью можно было смотреть на небо, измеряя положение звезд согласно нанесенным на кольца шкалам, как учил великий Птолемей[262]. Или же их можно было использовать в качестве наглядного пособия в обучении – в частности, для демонстрации трех основных астрономических плоскостей: горизонта, экватора и эклиптики (рис. 4.1а). Каждая из них представляет собой окружность, описанную вокруг центра небесной сферы, подобно шву на крикетном мяче, и у каждой есть свои полюса – вообразите линию, идущую вертикально вверх и вниз из центра круга, проведенную под прямым углом к его плоскости: полюса будут там, где эта линия пересекается с небесной сферой. Мы уже знакомы со всеми тремя плоскостями. Мы наблюдали восход и заход небесного экватора и всей небесной сферы, несущей звезды по кругу вокруг Полярной звезды и заставляющей работать солнечные часы. Мы уже знаем, что по высоте Полярной звезды – углу между направлением на Полярную звезду и плоскостью горизонта – можно узнать широту, на которой находится наблюдатель. Плоскость горизонта имеет собственный «полюс» – зенит, расположенный прямо над головой наблюдателя. Третья плоскость – это эклиптика, по которой Солнце совершает годичное путешествие по созвездиям, и она расположена под углом 23,5° к экватору. Планеты следуют по тому же маршруту, хотя немного отклоняются в обе стороны от эклиптики, причем иногда мы видим, что они меняют направление движения.


Рис. 4.1а. Три небесные плоскости: горизонт, экватор и эклиптика


К каждой из плоскостей привязана своя пара координат для определения положения светил (рис. 4.1б). Можно измерить высоту звезды над – или под – горизонтом, а также азимут (угол в плоскости горизонта между направлением на север и направлением на звезду, так же как мы ориентируемся по компасу). Для определения эклиптических координат нужно измерить эклиптическую широту звезды – угол к северу или к югу от эклиптики – и эклиптическую долготу, которая отсчитывается от точки равноденствия, расположенной там, где эклиптика пересекает экватор. А еще можно определить экваториальные координаты, узнав положение звезды относительно небесного экватора: для этого нужно измерить ее склонение к северу или югу от него и прямое восхождение вдоль экватора, которое также отсчитывается от точки равноденствия. Все эти координаты важны для конкретных целей. Мы уже не раз говорили о высоте небесных тел, наблюдали, как растет долгота Солнца, когда оно путешествует по зодиакальным созвездиям, и изучали, как со сменой времен года изменяется его расположение относительно экватора.


Рис. 4.1б. Эклиптическая и экваториальная системы координат (см. также рис. 2.10)


Если последние два абзаца показались вам сложными, вы не одиноки. Людям всегда было непросто мыслить в трех измерениях. Вот почему армиллярные сферы были так полезны. Беда в том, что они были еще и крайне сложны и дороги в изготовлении. Только самым умелым ремесленникам удавалось выковывать кольца и наносить на них разметку с точностью, позволявшей производить качественные измерения и переводить данные из одной системы небесных координат в другую. На практике для перехода между системами координат было найдено решение: отказаться от сферы и рассматривать каждую из плоскостей как диск (рис. 4.2). То, что эти диски закреплялись на расстоянии друг от друга, не имело особого значения, поскольку с их помощью измерялись углы между объектами, удаленными на практически бесконечное расстояние. Главное, чтобы диски находились под нужным углом друг к другу. Сложенные в стопку один над другим, они превращались в прибор под названием «торкветум» (или «туркетум»). Сама идея была известна в мусульманской Севилье уже в начале XII века, а в конце столетия два астронома – один жил на северо-востоке Франции, другой в Польше – написали на латыни руководства, в которых изложили те же принципы. Одна из этих рукописей была скопирована в учебник, который каноник из Мертонского приората взял с собой в Оксфорд[263].


Рис. 4.2. Торкветум. Из книги Петра Апиана «Введение в географию»


Если трехмерную сферу можно упростить до системы двумерных дисков, почему бы не пойти на шаг дальше и не свести систему дисков к парам поворотных планок? Аббат Ричард Уоллингфордский так и поступил.

Перейти на страницу:

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники