Читаем Тайная жизнь чисел полностью

Диагональ квадрата несоизмерима с его стороной.

Если d = a/b, то очевидно, что мы можем выбрать а и Ь так, что они будут взаимно простыми. Достаточно сократить дробь а/b. Теперь рассмотрим самый простой случай — квадрат с единичной стороной. Теорема Пифагора гласит, что d2 = 12 + 12 = 1 + 1 = 2, то есть (а/b)2 = 2, или, если вы предпочитаете иной способ записи, а2 = 2Ь2.

Рассмотрим а подробнее. Если а четное, то b обязательно должно быть нечетным, так как мы предположили, что а и b взаимно простые. Так как а = 2р, предыдущее равенство примет вид (2р)2 = 4р2 = 2b2, следовательно, 2р2 = Ь2, откуда следует, что b2 (а следовательно, и Ь) четное. Но это невозможно, так как мы уже показали, что b должно быть нечетным.

Теперь предположим, что а нечетное. Тогда нечетным будет и a2. Однако а2 = 2Ь2, и это означает, что а2 четное, что противоречит нашей предпосылке. Как видите, получается нечто немыслимое, и первым это доказал пифагореец Гиппас.

Как известно, лучшее, что можно сделать, получив дурную весть, — это убить гонца. Ямвлих Халкидский восемь веков спустя утверждал, что пифагорейцы построили склеп, где должен будет упокоиться тот, кто откроет несоизмеримые величины. Существует несколько версий гибели Гиппаса. В самой милосердной версии он даже не упоминается и говорится лишь о том, что пифагорейцы принесли в жертву сто быков — столь велико было удивление, которое вызывали несоизмеримые величины. Так как пифагорейцы были вегетарианцами, эта гекатомба (что по-гречески и означает «сто быков») кажется возможной, но не слишком вероятной. В другой версии легенды Гиппас всего лишь был изгнан из пифагорейской школы. И в самом жестоком варианте он был сброшен в море с борта корабля. Как бы то ни было, вера пифагорейцев в истинность своего учения оставалась непоколебимой. Лишь Евдокс Книдский, открыв вещественные числа, смог разрешить загадку несоизмеримых величин.

Евангелисты, рыба и число 153

Одно из первых упоминаний о нумерологии в истории западной цивилизации содержится в 21-й главе Евангелия от Иоанна, где рассказывается о чуде в море Тивериадском, свидетелем которому стал Симон Петр, поймавший в сеть за один раз 153 рыбы. Разумеется, это чудо сотворил Иисус Христос.

Число 153 непременно должно обладать какими-то особыми свойствами. Действительно, это треугольное число. Читатель может сосчитать звездочки на рисунке и убедиться, что их действительно 153:

Однако этой причины недостаточно для упоминания в Евангелии. Рассмотрим равенства:

Мы видим, что 1! + 2! + 3! + 4! + 5! = 1 + 2 + 6 + 24 + 120 = 153, как показано на схеме:

Это уже лучше, однако и теперь найдутся неверующие, для которых и этой причины недостаточно, чтобы считать 153 божественным числом. В поисках лучше го решения будем действовать так: поскольку Бог един в трех лицах, рассмотрим любое число, кратное 3, например 1728, возведем все его цифры в третью степень и сложим их:

13 + 73 + 23 + 83 = 864

83 + 63 + 43 = 792

73 + 93 + 23 = 1080

13 + 03 + 83 + 03 = 513

53 + 13 + 33 = 153

Удивительно, что ряд будет заканчиваться числом 153 для любого числа, кратного трем. Что это — чудо или занимательная математика?

Торговцы важнее математиков

Именно так считали в эпоху Возрождения. В 1456 году было изобретено книгопечатание, и путь к знаниям был открыт — для многих, но далеко не для всех, особенно если смотреть в прошлое из нашего благополучного XXI века. Вопреки ожиданиям, первой печатной книгой по математике были не «Начала» Евклида, подлинный памятник античной мудрости, а учебник по элементарной арифметике, отпечатанный в Тревизо под названием L’arte de l’abbacho («Искусство абака»). Автор книги ограничился объяснениями четырех арифметических действий и задачами о справедливом разделе вещей. Книга увидела свет в 1478 году. В ней использовались индоарабские цифры.

Купцы, которые интересовались подобными книгами, одержали верх над мудрецами и мыслителями. Впрочем, науке удалось отыграться: книга «Искусство абака» больше не переиздавалась, в то время как известно о сотнях изданий «Начал» Евклида.

Страница из учебника арифметики, отпечатанного в Тревизо, — первой в истории книги по математике.

Когда закончились буквы

Эта история, в которой сочетаются правда и вымысел, объясняет, почему в аналитической геометрии и в любых книгах по математике неизвестные чаще всего обозначаются буквой х. Начало этой традиции положил Рене Декарт (1596–1650) в своей книге «Геометрия», где обозначал известные числовые величины первыми буквами алфавита (a, b, с, d, …), а неизвестные — последними буквами (х, у, z). Так буква х, которая стоит на первом месте в этой троице, стала синонимом неизвестной величины.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное