Читаем Тайная жизнь чисел полностью

Фрагмент «Начал математики», в котором приводится строгое доказательство равенства 1 + 1 = 2. Сначала, как иронично указано в тексте (здесь явно слышится шутливый тон Рассела), нужно определить операцию сложения.


Небольшие ошибки


Огюстен Луи Коши (1789–1857) как-то раз получил по почте объемный труд по теории чисел, в котором доказывалось, что диофантово уравнение

x3 + y3 + z3 = t3

не имеет целых решений. Коши, который отличался саркастичным и довольно насмешливым характером, отправил автору трактата письмо, состоявшее из одной строки:

33 + 43 + 53 = 63.

Нечто подобное произошло с прекрасным французским математиком Альфонсом де Полиньяком (1817–1890), известным сегодня как автор гипотезы о простых числах, представляющей собой обобщение гипотезы Гольдбаха. Полиньяк провозгласил:

Любое нечетное число можно представить как сумму степени двойки и простого числа.

Гипотеза не только впечатляла, но и выглядела вполне правдоподобно. Рассмотрим любое число, например 63:

63 = 25 + 31.

Так как 31 простое, то, похоже, гипотеза Полиньяка верна. Прибавим еще один факт: Полиньяк дал понять, что проверил свою гипотезу для всех чисел вплоть до 3000000. Однако, видимо, в его вычисления вкралась ошибка: уже для числа 127 гипотеза не выполняется. Перечислим шесть первых степеней двойки и убедимся в том, что это и в самом деле так:

127 = 21 + 125 = 21 + 5·25;

127 = 22 + 123 = 22 + 3·41;

127 = 23 + 119 = 23 + 7·17;

127 = 24 + 111 = 24 + 3·37;

127 = 25 + 95 = 25 + 5·19;

127 = 26 + 63 = 26 + 3·21.

Однако следующей степенью двойки будет уже 28 = 128 — число, большее 127. Таким образом, несмотря на заявления Полиньяка, его гипотеза не выполняется для числа 127.


Удивительные расчеты


Следующая история произошла на собрании Американского математического общества в октябре 1903 года. Математик Фрэнк Нельсон Коул (1861–1926) должен был выступить с докладом на тему «О разложении больших чисел на множители».

Выступление Коула было не совсем обычным: он поднялся с места, подошел к доске и записал на ней 267—1 — число Мерсенна М67, которое считалось простым. Далее Коул вычислил значение 267 и вычел из него 1. Присутствующие затаили дыхание, а Коул записал на доске еще два числа и вычислил их произведение: 193707721 x 761838257287. Полученное число 147573952589676412927, как и ожидалось, было равно искомому числу М67. Коул развернулся и проследовал на свое место.

Его доклад длился целый час, и за это время ученый не произнес ни слова. Однако аудитория все равно разразилась аплодисментами.

Следует отметить, что в 1903 году еще не существовало ни калькуляторов, ни алгоритмов, которые используются для работы с числами Мерсенна сегодня. По словам Коула, все необходимые расчеты он провел «за три года по воскресеньям».

В честь этого математического подвига Американское математическое общество учредило премию Коула, которая и сегодня остается очень престижной. За поиском простых чисел Мерсенна можно следить в интернете на сайте проекта Great Internet Mersenne Prime Search (http://www.mersenne.org/default.php). Самым большим простым числом, известным на февраль 2013 года, было М57885161 — действительно большое число, состоящее из 17 425 170 цифр. И еще: М5788М61 начинается с цифры 5. Больше об этом числе — ни слова.


Очень большое число


В математике можно говорить о сколь угодно больших числах — конечных, но очень больших, огромных, колоссальных. В 1938 году девятилетний племянник известного математика Эдварда Казнера (1878–1955) придумал число гугол, которое казалось ему невообразимо большим, практически бесконечным. Милтон Сиротта — так звали племянника — определил гугол как единицу, за которой следует 100 нулей.

В математической нотации это число записывается так:

1 гугол = 10100.

Гугол кажется не слишком впечатляющим — куда больше впечатляет гуголплекс, определяемый как 1, за которым следует гугол нулей:


Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
До предела чисел. Эйлер. Математический анализ
До предела чисел. Эйлер. Математический анализ

Леонард Эйлер, без всякого сомнения, был самым выдающимся математиком эпохи Просвещения и одним из самых великих ученых в истории этой науки. Хотя в первую очередь его имя неразрывно связано с математическим анализом (рядами, пределами и дифференциальным исчислением), его титаническая научная работа этим не ограничивалась. Он сделал фундаментальные открытия в геометрии и теории чисел, создал с нуля новую область исследований — теорию графов, опубликовал бесчисленные работы по самым разным вопросам: гидродинамике, механике, астрономии, оптике и кораблестроению. Также Эйлер обновил и установил систему математических обозначений, которые очень близки к современным. Он обладал обширными знаниями в любой области науки; его невероятный ум оставил нам в наследство непревзойденные труды, написанные в годы работы в лучших академиях XVIII века: Петербургской и Берлинской.  

авторов Коллектив

Математика / Физика / Научпоп / Образование и наука / Документальное