Некоторые полагают, что инициатором такого решения был издатель книги: он заметил, что если литер с другими буквами не хватало, то литер с буквой
Как было на самом деле — мы уже не узнаем, но точно можно утверждать, что обозначение, введенное Декартом, сегодня использует весь мир.
Знакомство с двоичной системой счисления для разностороннего мыслителя
В 1689 году Лейбниц обратился к своему другу, иезуиту Карлу-Филиппу Гримальди, главному придворному математику Китая (в последующие годы они вели весьма интересную переписку). Ученый просил Гримальди использовать все свое влияние и дар убеждения, чтобы, опираясь на новые знания о единице и нуле, убедить императора Кам-хи оставить буддизм и с распростертыми объятиями встретить христианство. Однако император Китая счел, что двоичная система никак не связана с единым Богом и вполне соответствует концепции инь и ян. Он не стал принимать христианство, а двоичная система счисления вернулась в царство арифметики, которое не должна была покидать.
Лейбниц упрямо приписывал полубожественные свойства всем новым математическим понятиям, о которых ему становилось известно. Например, таинственные мнимые числа он считал возвышенными и прекрасными, «амфибиями бытия с небытием».
О детстве
1 + 2 + 3 +… + 98 + 99 + 100.
Спустя несколько минут маленький Гаусс поднялся с места и протянул учителю грифельную доску с ответом: 5050. Как несносный ребенок смог так быстро справиться с задачей? Гаусс заметил, что если записать числа исходного ряда друг под другом справа налево и слева направо,
1 + 2 + 3 + … + 98 + 99 + 100
100 + 99 + 98 + … + 3 + 2 + 1,
то сумма чисел в каждой паре будет равна:
1 + 100 = 2 + 99 = 3 + 98 =… = 98 + 3 = 99 + 2 = 100 + 1 = 101.
Сколько всего таких пар? 100. Так как искомая сумма была в два раза меньше, ответ к задаче таков:
(100·101)/2 = 50·101 = 5050.
Обычно здесь и заканчивается легенда об одаренном ребенке с фантастическими способностями — наверное, для того, чтобы понять ее могли все, даже те, кто далеко отстал от Гаусса по своим способностям.
На самом же деле задача была еще сложнее: учитель предложил ученикам найти сумму первых 100 чисел ряда:
81297 + 81495 + 81693 + … —
каждое слагаемое отличалось от предыдущего на 198. Получить этот результат уже не так просто — выходит, Гаусс был еще умнее, чем гласит легенда.
В 1847 году французский математик
По словам Ламе, без неоценимой помощи Лиувилля он не смог бы… и прочая, и прочая. В ответ совершенно пораженный Лиувилль обратил внимание собравшихся на одну небольшую деталь: доказательство Ламе было верно тогда и только тогда, когда выполнялось одно условие: целые числа определенного класса (далее мы определим их подробнее), как и обычные целые числа, можно разложить на множители единственным способом. Следует отметить, что в этом сомневались немногие. Ламе попытался найти доказательство для этого недостающего звена, но, к его разочарованию, сделать этого не удалось. Как сказал музыкальный критик об одном из произведений Дебюсси: «Его музыка не слишком шумна, но этот шум крайне неприятен». Ламе терял терпение, не в силах справиться с каким-то пустяком.
Тремя годами ранее немецкий математик
Сегодня известно, что знаменитые целые числа Ламе образуют так называемое квадратичное поле. Во времена ученого этим числам уделялось не слишком много внимания. Для обычных целых чисел, в частности на множестве
, разложение на множители является единственным (если не делать разницы между 1 и —1). Например,