6 = 2·3 = 2·(—3)·(—1) = (—2)·3·(—1) = (—2)·(—3).
Множителями в этом разложении являются 2 и 3. На множестве
[√-5] (его элементы — числа вида a + ib√5, где а и b — целые), за исключением 1 и —1, разложить это число на множители можно уже не единственным способом:
6 = 2·3 = (1 + i√5)·(1 — i√5).
К примеру, целое число 6 (если принять, что 1 = —1) можно разложить на множители двумя разными способами.
Как говорится в пословице, нет худа без добра. Куммер начал охоту за доказательством теоремы Ферма, описав идеальные числа, и знаменитая недоказуемая теорема
Не существует тройки целых чисел х, у, z, которые удовлетворяли бы равенству хn + уn = zn для n > 2
была доказана для 100 первых показателей степени (n < 100). Оставалось доказать ее для бесконечного множества чисел.
Эрнст Куммер.
Эрнст Куммер не только увлекался нумерологией, но также был ярым патриотом и славился неспособностью запомнить основы элементарной арифметики — обычные таблицы умножения. Когда ему нужно было использовать таблицу умножения в классе, он обращался к ученикам: «Семь на девять будет… эээ …» — тут какой-нибудь ученик, желая напакостить, обычно подсказывал неверный ответ: «Семь на девять будет шестьдесят один». «Нет, нет, шестьдесят девять», — подсказывал другой ученик, присоединяясь к общему веселью. И тогда бедному Куммеру не оставалось ничего другого, как невинно сказать: «Ну же, господа, давайте остановимся на чем-нибудь одном». Но правильный ответ был необходим, и Куммер начинал рассуждать логически. Сколько же будет 7·9? Числа 60, 62, 64, 66 и 68 не подходят, так как они четные, 61 и 67 не подходят, потому что они простые, 65 не подходит потому, что оканчивается на 5 и, следовательно, делится на 5. 69 тоже не подходит, так как очевидно, что оно слишком велико. Остается 63 — таким и должен быть ответ. Следовательно, 7·9 = 63.
1 + 1 = 2 и другие элементарные равенстваНемецкий математик Иоганн Петер Густав Лежён Дирихле (1805–1859) питал к числам особые чувства. Рассказывают, что даже ложась спать, он клал под подушку том «Арифметических исследований» Гаусса. А когда у Дирихле родился первый ребенок, он отправил тестю телеграмму:
2 + 1 = 3.
Яснее выразиться невозможно: раньше их было двое, и вот на свет появился третий. Кроме того, телеграммы в то время были очень дороги, так что послание Дирихле было не только лаконичным, но и дешевым. Он не первым и не последним использовал равенство, вынесенное в заголовок: сам Сократ ломал голову над выражением «1 + 1 = 2», будучи не в силах убедиться в его очевидности. Но что можно ожидать от человека, выбравшего своим девизом фразу «Я знаю только то, что ничего не знаю»?
Австрийский физик и математик Людвиг Больцман (1844–1906) как-то стал героем забавной сцены. Ученый умел быстро выполнять расчеты в уме, поэтому его занятия часто были настоящей пыткой для присутствующих: Больцман пропускал множество действий, так как считал очевидными вычисления, произведенные в уме, и даже не записывал их на доске. На одной из лекций его попросили все же расшифровать ход своих мыслей. Больцман покорно пообещал исправиться и продолжил рассуждения: «Как я уже говорил, поскольку pv = p0v0(1 + at) и так далее, и так далее», — однако по-прежнему ничего не записал. Закончил он свою непонятную лекцию бессмертной фразой: «Я верю, что все сказанное выше будет для вас столь же очевидным, как и то, что один плюс один равно двум». И тут, вспомнив о своем обещании записывать все вычисления, он подошел к девственно чистой доске и записал: «1 + 1 = 2».
Несколько позже Бертран Рассел (1872–1970) и Альфред Норт Уайтхед (1861–1947) удивили весь научный мир, создав на заре XX века (в 1910–1913 годах) невероятно сложный и почти недоступный для понимания трехтомный труд по логике, который, вслед за Ньютоном, назвали «Начала математики». Очевидное для непосвященных равенство «1 + 1 = 2», вынесенное в заголовок этой главы, во втором томе книги приводилось как теорема под номером 54.43, а весь первый том, можно сказать, подготавливал для него почву. Чтобы вы могли оценить всю «увлекательность» «Начал математики», приведем лишь один факт: редакция одной уважаемой газеты учредила премию для того, кто докажет, что прочел всю книгу. Премия так и осталась невостребованной. Какое-то время в редакции теплилась надежда, что хотя бы один из соавторов прочел книгу целиком, но эти ожидания были напрасными: и Уайтхед, и Рассел прочли только лично написанную часть труда.