Кроме того, РНК-интерференция — это не единственный способ влияния РНК на регулирование генов. Группа небольших некодирующих РНК, называемых piРНК, играет важную роль в эпигенетическом подавлении опасных вирусных последовательностей в человеческом геноме. Более того, существует еще один, даже более интересный, класс некодирующих РНК, который регулирует человеческий геном. Это сравнительно недавнее открытие, объясняющее черную дыру, существовавшую в проекте расшифровки генома 2001 года, — те 50 %, которые были пустыми.
У всех млекопитающих имеется половая дифференциация хромосом — X и Y. Женщины наследуют от каждого из родителей по одной Х-хромосоме, а мужчины — Х от матери и Y от отца. Кроме того, мы получаем от каждого из родителей по 22 неполовые хромосомы, называемые аутосомами. В итоге формируется ядерный геном из 46 хромосом. В то время как Y-хромосома содержит 78 генов, кодирующих белок и в основном отвечающих за образование яичек, мужское телосложение, фертильность и производство спермы, Х-хромосома насчитывает около 2000 генов, лишь отдельные из которых имеют отношение к полу. Такое хромосомное несоответствие между полами ведет к потенциальному дисбалансу в регулировании эмбриологического развития. Если бы половые хромосомы были полностью экспрессированы во время эмбриогенеза, эмбрионы женского пола (как и женщины в течение всей жизни) получали бы двойную дозу генов Х-хромосомы, а эмбрионы мужского пола (и мужчины) — одинарную. Это могло бы привести к существенным регуляторным проблемам.
В 1961 году Мэри Ф. Лайон, бывшая ученица пионера эпигенетики Конрада Х. Уоддингтона, поняла, что разгадка может заключаться в отключении одной из Х-хромосом у женщин. Ее идея подтвердилась, когда генетики доказали, что «Х-инактивация» у эмбрионов женского пола происходит примерно на 16-й день развития. Удивительно, что при этом не выбирается Х-хромосома определенного родителя. Инактивация случайным образом касается либо отцовской, либо материнской Х-хромосомы. Кроме того, отключается не вся хромосома, а около 60 % ее генов. Оставшиеся 40 % необходимы для защиты эмбриона от рецессивной мутации по Х-хромосоме. Вот почему у женщин почти не бывает цветовой слепоты или гемофилии. Им бы понадобилась двойная доза мутировавших рецессивных генов, в то время как мужчинам хватает одной копии, содержащейся в Х-хромосоме.
В 1991 году, почти через 30 лет после того, как Лайон пришла в голову идея инактивации, ученые из Стэнфордского университета выяснили, что один ген в инактивированной Х-хромосоме играет ключевую роль в процессе ее отключения. Этот ген назвали
Мы видим, как делятся клетки эмбриона и копируется геном. Рельсы нашего пути расходятся, разрываются слабые водородные связи между шпалами, и смысловая нить ДНК отделяется от антисмысловой. Скорость копирования потрясает. Надвигается метель, но вместо снежинок в ней нуклеотиды РНК — Г, А, Ц и У. На наших глазах некоторые участки смысловой нити начинают светиться разными цветами. Одни из них обозначают гены, другие — промоторы, третьи — вирусные участки, а четвертые — участки, о которых мы пока ничего не знаем. Этот процесс очень похож на кодирование белка, которое мы уже видели и при котором нить ДНК копируется на нить информационной РНК. Но здесь, судя по всему, копирование не прекращается и захватывает несколько тысяч нуклеотидов, составляющих примерно один ген. Формируется огромная молекула РНК, состоящая из 17 тысяч нуклеотидов. Судя по всему, она имеет необычную внутреннюю структуру, в которой присутствуют генетические эквиваленты точек, или стоп-кодоны. До этого мы не видели ничего подобного.
— Что это такое?
— Это длинная некодирующая РНК, результат работы того, что некоторые генетики называют РНК-геном. Научное название для нее —
Мы наблюдаем, как молекула РНК проплывает над Х-хромосомой, изменяя эпигенетические маркеры активирующих гены гистонов таким образом, что группы гистонов превращаются в плотные некодирующие формации, и собирая вокруг себя облачка белков для метилирования пар Ц — Г.
— Что происходит?
— Она отключает хромосому, но не целиком, а лишь на 60 %.