При ближайшем рассмотрении мы видим, что в действительности в функциях красных и белых, полосатых и поперечно-полосатых мышц нет такой резкой разницы, как могло бы показаться на основе присутствующих макроскопических различий между ними. Можно утверждать, что при тонических сокращениях используется другая анатомическая часть мышцы или другой механизм, нежели чем при при сильных клонических и резких сокращениях.
Было доказано (Маринеско, Крейндлер и др.), что поперечнополосатая мускулатура имеет две хронаксии (будет пояснено позже): одна соответствует высокой возбудимости, характерной для клонических или фазных сокращений, а другая – низкой возбудимости, соответствующей тоническому сокращению. С микроскопической точки зрения мы уже упоминали, что в большинстве мышц присутствует смесь красных и белых волокон. Существует множество теорий, объясняющих, каким образом мышцы сокращаются двумя столь разными способами – клоническим и тоническим: в первом случае утомляясь после нескольких сокращений, во втором – оставаясь практически неутомимыми; однако этот факт уже тщательно установлен и согласован.
Передача возбуждения по нервам происходит очень медленно по сравнению с электрической проводимостью в металлах. Она имеет совершенно иную природу; скорость проведения в одних нервах измеряется в метрах в секунду, в других – в сантиметрах в секунду. Координация во времени любого двигательного акта может быть достигнута за счет более быстрой проводимости в более длинных нервах или за счет более раннего возбуждения длинных нервов.
Любая передача данных ослабляется на пути изменениями, которые происходят в сердцевине проводника или вне его; и тогда было бы необходимо начинать ее с более сильных сигналов в более длинных нервах, чтобы компенсировать потерю силы, которая увеличивается с расстоянием. Однако если говорить о проводимости нерва, то сила сигнала одинакова на всем его протяжении и в точке назначения равна тому импульсу, который его запустил.
Трансмиссия – это реакция прохождения сигнала (деполяризация), которая на протяжении всего пути забирает локально часть потенциальной энергии нерва. Позже потенциальная энергия восстанавливается до прежнего уровня, но на это требуется время.
Проводимость нерва не является такой же непрерывной, как поток жидкости или газа, а скорее напоминает пулеметную очередь. У человека среднее количество импульсов в секунду составляет порядка пятидесяти.
В самом нерве нет ничего, что ограничивало бы проводимость в обратном направлении. При перерезании нерва и возбуждении отрезанных концов импульсы проходят как в одну, так и в другую сторону. Вентильное действие, ограничивающее передачу в обратном направлении, в действительности происходит из-за синапсов.
Клетка может быть связана с некоторыми пирамидальными волокнами, экстрапирамидальными волокнами и многими другими. С другой стороны, каждое волокно пирамидального тракта связано с большим количеством моторных клеток. Каким образом клетка в один момент посылает импульсы вниз по одному волокну, а затем вниз по-другому, или по нескольким из них одновременно? И как мотонейрон в один момент реагирует на импульсы от одной клетки, а в следующий – от другой?
Мы видели, что нервные волокна можно считать полностью изолированными друг от друга и что между ними отсутствует поперечная диффузия. По итогам работы Шеррингтона установлено, что в синапсах импульсы передаются от одного волокна к другому. От Лапика мы узнали о существовании конституциональной хронаксии, то есть о том, что любая возбудимая единица имеет собственную временную константу и для того, чтобы возбудить ее, возбуждение должно длиться определенное время или иметь соответствующую для этого частоту. Теперь, если клетки, соседние с возбужденной, имеют такую же хронаксию, возбуждение переходит к ним и возбуждает их до того же уровня. Изохронные клетки и волокна возбуждаются одновременно. Если какие-то из соседних клеток имеют лишь незначительно отличающуюся хронаксию (не более одной трети), они гомохронны, и возбуждение передается им лишь частично. Гетерохронные единицы, то есть те, которые имеют сильно отличающуюся хронаксию, остаются полностью незадействованными. Клетка поочередно реагирует то на одну соседнюю клетку, то на другую в зависимости от хронаксии, которой она обладает в данный момент. Фактически существует лишь одна конституциональная хронаксия и ряд функциональных хронаксий или подчиненных хронаксий, то есть хронаксия любой возбудимой единицы в живом организме не является установленной, а подчинена высшим центрам. Эти центры осуществляют свой контроль, изменяя хронаксию тех элементов, которые они возбуждают.