Читаем Тени разума. В поисках науки о сознании полностью

Дело, однако, в том, что мы-то знаем, что такое на самом деле представляют собой натуральные числа, и для нас не составит никакого труда отличить их от каких-то непонятных сверхнатуральных чисел. Натуральные числа суть самые обыденные вещи, обозначаемые, как правило, символами 0, 1, 2, 3, 4, 5, 6, …. С этой концепцией мы знакомимся еще в детском возрасте и легко отличим ее от надуманной концепции сверхнатурального числа (см. §1.21). Есть что-то таинственное в том, что мы, похоже, и впрямь обладаем каким-то инстинктивным пониманием действительного смысла понятия натурального числа. Все, что мы получаем в этом смысле в детском (или уже взрослом) возрасте, сводится к сравнительно небольшому количеству описаний понятий «нуля», «единицы», «двух», «трех» и т.д. («три апельсина», «один банан» и т.п.), однако при этом, несмотря на всю неадекватность такого описания, мы как-то умудряемся постичь всю концепцию в целом. В некотором платоническом смысле натуральные числа видятся своего рода категориями, обладающими абсолютным концептуальным существованием, от нас никак не зависящим. И все же, несмотря на «человеконезависимость» натуральных чисел, мы оказываемся способны установить интеллектуальную связь с действительной концепцией натуральных чисел, опираясь лишь на неоднозначные и, на первый взгляд, неадекватные описания. С другой стороны, не существует конечного набора аксиом, с помощью которого можно было бы провести четкую границу между множеством натуральных чисел и альтернативным ему множеством так называемых «сверхнатуральных» чисел.

Более того, такое специфическое свойство всей совокупности натуральных чисел, как их бесконечное количество, мы также можем каким-то образом воспринимать непосредственно, тогда как система, действие которой ограничено точными конечными правилами, не способна отличить данную конкретную бесконечность натуральных чисел от других возможных («сверхнатуральных») вариантов. Мы же легко понимаем бесконечность, характеризующую натуральные числа, пусть и обозначаем ее просто точками «…» —

«0, 1, 2, 3, 4, 5, 6, …»,

либо сокращением «и т.д.» —

«нуль, один, два, три и т.д.».

Нам не нужно объяснять на языке каких-то точных правил, что именно представляет собой натуральное число. В этом смысле можно считать, что нам повезло, так как такое объяснение дать невозможно. Как только нам приблизительно укажут верное направление, мы тут же обнаруживаем, что уже откуда-то знаем, что это за штука такая — натуральное число!

Перейти на страницу:

Похожие книги

Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан
Основы философии (о теле, о человеке, о гражданине). Человеческая природа. О свободе и необходимости. Левиафан

В книгу вошли одни из самых известных произведений английского философа Томаса Гоббса (1588-1679) – «Основы философии», «Человеческая природа», «О свободе и необходимости» и «Левиафан». Имя Томаса Гоббса занимает почетное место не только в ряду великих философских имен его эпохи – эпохи Бэкона, Декарта, Гассенди, Паскаля, Спинозы, Локка, Лейбница, но и в мировом историко-философском процессе.Философ-материалист Т. Гоббс – уникальное научное явление. Только то, что он сформулировал понятие верховенства права, делает его ученым мирового масштаба. Он стал основоположником политической философии, автором теорий общественного договора и государственного суверенитета – идей, которые в наши дни чрезвычайно актуальны и нуждаются в новом прочтении.

Томас Гоббс

Философия