Читаем Теоретические основы инвестиций в акции, облигации и стандартные опционы полностью

Достижимое множество портфелей, содержащих три рискованных актива. Предположим, что портфель содержит три рискованных актива , и . По аналогии с соотношениями (1.15) и (1.16) получаем


где , и – относительные объёмы инвестирования в активы , и соответственно; , и – МО доходностей активов , и соответственно; , и – СКО доходностей активов , и соответственно; , и – коэффициенты корреляции между доходностями активов и , и , и соответственно.

На конкретном примере рассмотрим особенности построения достижимого множества портфелей, которые содержат три актива , и с коррелированными доходностями и параметрами, приведенными в табл. 1.2.

Таблица 1.2

Параметры активов , и


Активы


Параметры

активов


А1

А2

А3

15

10

5

0,14

0,13

0,12


На рис. 1.4 представлено достижимое множество портфелей для всех возможных сочетаний относительных объёмов инвестирования , и в каждый актив , и . Для наглядности внутренняя область достижимого множества заполнена кривыми, которые построены при фиксированных значениях .



Рис. 1.4. Достижимое множество портфелей , которые содержат три актива , и


Анализ рис.1.4 показывает, что внешняя граница и внутренняя область достижимого множества формируется бесконечным множеством дуг гипербол, сплошь заполняющих фигуру . Закономерности заполнения данной фигуры дугами гипербол, которые показаны пунктирными линиями, наглядно демонстрируется на рис. 1.4.

Внутренняя область достижимого множества содержит точки пересечения дуг гипербол. Это означает, что портфели с одинаковыми значениями МО доходности и СКО доходности могут быть сформированы несколькими вариантами объёмов инвестирования , и .

Внешняя граница достижимого множества по форме напоминает зонт [1] и состоит из пилообразной части и выпуклой части .

Пилообразная часть внешней границы достижимого множества формируется точками (портфелями, содержащими только один актив) , и , а также дугами гипербол с вершинами , и , попарно соединяющими эти точки (портфелями, содержащими только два актива):

дугой , которая формируется при ;

дугой , которая формируется при ;

дугой , которая формируется при .

Характерной особенностью выпуклой части достижимого множества является наличие вершины (, ). Портфель, соответствующий точке , обладает минимальным значением СКО доходности из всего достижимого множества, что достигается при объёмах инвестирования в активы , , .

Следует отметить, что СКО доходности портфеля заметно отличается в меньшую сторону от СКО доходностей исходных активов , и . То есть доходность портфеля является наиболее устойчивой из всего допустимого множества портфелей (в [1] портфель называют наименее рискованным, так как СКО доходности ассоциируется с риском).

Координаты вершины выпуклой части достижимого множества и соответствующие объёмы инвестирования в активы , и можно определить не только численными методами, но методом выделения экстремума функции с использованием частных производных.

Учитывая, что преобразуем выражение для дисперсии доходности портфеля к виду


Для определения минимального значения СКО доходности портфеля, содержащего три актива, решим систему уравнений


В результате получаем соотношения для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля


где

Рассмотренный подход позволяет определить координаты и вершины достижимого множества , которая соответствует портфелю с минимальным значением СКО доходности.

Аналогичный подход может быть использован для расчёта объёмов инвестирования в активы , и , при которых достигается минимум СКО доходности портфеля для заданного значения МО доходности портфеля . Другими словами, представляется возможным вывести соотношения для расчёта границы выпуклой части достижимого множества.

Учитывая, что и , получаем


Такое представление объёмов инвестирования и позволяет преобразовать выражение для дисперсии доходности портфеля как функцию объёма инвестирования


Для определения минимального значения СКО доходности портфеля при заданном значении МО доходности портфеля необходимо решить уравнение


В результате получаем соотношения для расчёта объёмов инвестирования в активы , и


где:


Анализ полученных соотношений показывает, во–первых, объёмы инвестирования , и прямо пропорциональны МО доходности портфеля , следовательно, граница выпуклой части достижимого множества является гиперболой. Во–вторых, условия , и ограничивают данную гиперболу. Координаты точек и , которые ограничивают гиперболу, могут быть определены из условий , , На рис. 1.4 такими точками являются , , и , , , которые соответствуют портфелям с двумя активами. В–третьих, граница выпуклой части достижимого множества формируется:

на участке – дугой гиперболы , т.е. двумя активами и ;

на участке – дугой гиперболы , т.е. тремя активами , и ;

на участке – дугой гиперболы , т.е. двумя активами и .

Перейти на страницу:

Похожие книги

23 тайны: то, что вам не расскажут про капитализм
23 тайны: то, что вам не расскажут про капитализм

Экономисты утверждают, что инфляция находится под жестким контролем…Но люди видят лишь постоянное повышение цен.Экономисты утверждают, что мы живем в эпоху свободного рынка…Однако правительства едва ли не всех стран мира в большей или меньшей степени планируют бюджет.Экономисты утверждают, что уровень образования напрямую связан с уровнем зарплаты…Однако молодые ученые по-прежнему переезжают из страны в страну в поисках достойных условий существования.Экономисты утверждают, что зарплаты постоянно растут, а уровень жизни повышается…Так почему тысячи людей уверены, что живут все хуже и хуже?Автор этой книги разоблачает самые распространенные мифы рыночной экономики и призывает читателей мыслить самостоятельно и основывать свои решения на здравом смысле, а не на теориях, зачастую не выдерживающих испытания реальностью!

Ха-Джун Чанг , Ха Джун Чхан

Экономика / Финансы и бизнес
Покер лжецов
Покер лжецов

«Покер лжецов» — документальный вариант истории об инвестиционных банках, раскрывающий подоплеку повести Тома Вулфа «Bonfire of the Vanities» («Костер тщеславия»). Льюис описывает головокружительный путь своего героя по торговым площадкам фирмы Salomon Brothers в Лондоне и Нью-Йорке в середине бурных 1980-х годов, когда фирма являлась самым мощным и прибыльным инвестиционным банком мира. История этого пути — от простого стажера к подмастерью-геку и к победному званию «большой хобот» — оказалась забавной и пугающей. Это откровенный, безжалостный и захватывающий дух рассказ об истерической алчности и честолюбии в замкнутом, маниакально одержимом мире рынка облигаций. Эксцессы Уолл-стрит, бывшие центральной темой 80-х годов XX века, нашли точное отражение в «Покере лжецов».

Майкл Льюис

Финансы / Экономика / Биографии и Мемуары / Документальная литература / Публицистика / О бизнесе популярно / Финансы и бизнес / Ценные бумаги
155 советов начинающему бизнес-тренеру
155 советов начинающему бизнес-тренеру

Мало кто в наше время не слышал о такой форме обучения, как тренинг. Он может быть невероятно эффективным при условии соблюдения определенных принципов. Если вы держите эту книгу в руках, значит, вы не просто оценили пользу тренингов как участник, но и решили выступить в качестве тренера. Если у вас для этого есть достаточный опыт – отлично. Несколько часов или дней на подготовку – и можно выходить к аудитории. Но если опыта нет или его совсем мало, то задача усложняется. Придется действовать путем собственных проб и ошибок – это потребует много нервов, времени и сил. Есть риск, что вы быстро выдохнетесь и собьетесь с пути… Поэтому, прежде чем предпринимать какие-либо действия, имеет смысл обратиться к опыту тех, кто уже прошел определенную дистанцию. Именно с целью поделиться опытом и создавалась данная книга. Она включает 155 простых советов, которые вы можете сразу же внедрять в свою работу. В каких случаях эта книга может быть полезна: • вы только начинаете карьеру в сфере обучения и развития персонала; вам нужны простые и понятные рекомендации и алгоритмы; • вы не связаны с обучением, но по той или иной причине вам нужно провести тренинг; • вы действующий тренер, консультант или коуч и хотели бы освежить свои знания. Желаю приятного прочтения, отличных результатов и удовольствия от процесса! С уважением, Андрей Афонин

Андрей Николаевич Афонин

Экономика / Самосовершенствование / Эзотерика