Необходимость формирования портфеля активов обусловлена двумя причинами.
В литературе встречается термин «хорошо диверсифицированный портфель» – портфель, в котором предельно сокращён максимальный объём инвестиций в один рискованный актив. Подразумевается, что владелец такого портфеля в случае наступления негативного события психологически готов к относительно небольшим и прогнозируемым потерям. Считается, что хорошо диверсифицированный портфель должен содержать не менее 20 видов активов. При таком количестве видов активов в портфеле в случае дефолта одного из эмитентов инвестор не теряет шансы на получение дохода.
Определим
При наличии в портфеле нескольких видов активов цена покупки портфеля составляет
где – количество активов
Если
Математическое ожидание капитального дохода портфеля, который содержит видов ценных бумаг, равно
Тогда соотношение для
где – относительный объём инвестирования в один актив
Необходимо отметить, что в полученном соотношении:
математическое ожидание капитальной доходности портфеля является не чем иным как средневзвешенной капитальной доходностью активов, входящих в портфель;
и в частном случае, когда объёмы инвестирования в активы одинаковы, .
Аналогичным образом определим дивидендную доходность портфеля активов
где – дивидендный доход актива
Математическое ожидание доходности портфеля активов в целом составляет
где – математическое ожидание доходности актива
В литературе по теории инвестиций широко используется понятие средняя доходность ценных бумаг по видам, отраслям, за определённый промежуток времени и т.п. (см. табл. 1.2 и табл. 17.2 [1], табл. 6.5 [5], табл. 2.4 [6], табл. 28.1 и табл. 30.1 [7]). При этом под средней доходностью понимается среднеарифметическая доходность. Например, в табл. 1.2 [1] приведены данные за 68–летний период годовых доходностей трёх видов активов – акций, облигаций и казначейских векселей. На основе этих данных с использованием известной формулы рассчитаны среднегодовые (среднеарифметические) доходности каждого вида актива. То есть вес годовых доходностей безосновательно принят одинаковым . По этой причине полученные в табл. 1.2 [1] результаты расчётов среднегодовых доходностей активов и соответствующие выводы не могут заслуживать доверия.
Недопустимость подобного рода расчётов хорошо иллюстрируется простым примером. Предположим портфель содержит два актива
Результаты расчётов отличаются весьма существенно, что свидетельствует о недопустимости определения средней доходности (
Дисперсия дохода портфеля, который содержит