Кроме того, обязательным условием для применения в теории и на практике рассмотренных моделей является наличие информации о цене покупки акции или портфеля акций . До момента покупки–продажи активов инвестору достоверно известны дивидендные выплаты и динамика курсов каждого актива в течение рассматриваемого периода времени. Такие данные публикуются в известных специализированных изданиях. Но до момента купли–продажи инвестор может только предполагать уровень цены, по которой будет приобретен или продан тот или иной актив. Цена покупки–продажи, а, следовательно, и другие расчётные показатели актива инвестору будут достоверно известны только апостериори.
1.3. Автономный и портфельный риски инвестиций
Риск, связанный с активом, можно рассматривать с двух позиций:
как автономный риск, когда актив рассматривается изолированно от других активов;
как портфельный риск, когда актив рассматривается во взаимосвязи с другими активами.
Таким образом, автономный риск – это риск, с которым инвестор столкнётся, если инвестиции будут осуществлены только в один актив. На самом деле финансовые активы практически никогда не держатся инвесторами по отдельности – они объединяются в портфели. Но для того, чтобы оценить портфельный риск, необходимо уметь рассчитывать и автономные риски для всех финансовых активов.
Чтобы проиллюстрировать автономный риск, связанный с финансовыми активами, предположим, что инвестор покупает краткосрочные векселя Казначейства
Если бы сумма 100 тыс. долл.
Ни одна инвестиция не будет осуществлена, если средняя доходность недостаточно высока для того, чтобы компенсировать риск инвестиции. Например, вряд ли найдутся инвесторы, которые пожелают приобрести акции нефтяной компании в рассмотренном примере, если средняя доходность этих акций окажется 5%, как и векселей Казначейства
Для инвестора очевидным негативным событием является отрицательность доходности актива. Поэтому в качестве меры автономного риска, согласно определению, логично использовать уровень вероятности такого события.
В целях упрощения расчётов в качестве меры автономного и портфельного риска Г.Марковиц предлагает использовать
Предположим, что имеются два портфеля активов
Тогда при цене покупки портфеля вероятность отрицательной доходности портфеля (т.е. вероятность того, что ) рассчитывается по формуле
Функции распределения уровней доходов портфелей и , т.е. вероятности того, что доходы портфелей
Таблица 1.1
Функции распределения уровней доходов портфелей
,
тыс. долл.
70
80
90
100
110
120
130
0
0
0,04
0,21
0,57
0,88
0,99
0,02
0,05
0,14
0,27
0,46
0,66
0,82
Для наглядности функции распределения уровней доходов портфелей
Рис. 1.1. Функции распределения уровней доходов портфелей
В рассматриваемом примере [1] цена покупки портфелей одинакова и составляет тыс. долл., портфель
Другими словами, инвестор должен сопоставить два портфеля с различными инвестиционными качествами и выбрать (обоснованно или интуитивно) наилучший. Для инвестора такая задача является типовой.