Анализ представленных в табл. 1.1 и на рис. 1.1 зависимостей, показывает, что инвестор может принять решение на основе сравнения вероятностей отрицательных доходностей портфелей [1].
Например, при цене покупки портфелей тыс. долл. вероятности отрицательной доходности портфелей составляют и . То есть вероятность отрицательной доходности у портфеля
Проанализируем изложенное более детально. Исходя из практических соображений, инвестор может выбрать и другой подход, основанный на сравнении вероятностей положительных доходностей. Например, используя графики зависимостей на рис. 1.1, получаем и , и . То есть вероятности недостижения
На практике инвестор принимает то или иное решение не на основе сравнения
цены покупки;
математического ожидания доходности;
риска (вероятности отрицательной доходности).
Естественно, при прочих равных условиях инвестор выберет наиболее дешёвый и доходный портфель с минимальной вероятностью отрицательной доходности.
В некоторых частных случаях на основе анализа зависимостей, представленных на рис.1.1, типовая задача выбора портфеля решается на основе логических умозаключений, например:
Предположим, что цены покупки портфелей одинаковы и составляют тыс. долл. В точке пересечения зависимостей и вероятности отрицательных доходностей обоих портфелей одинаковы и равны . При равенстве двух параметров инвестор однозначно отдаст предпочтение портфелю
Предположим, что цена покупки портфеля
Предположим, что цена покупки портфеля
Таким образом, в результате достаточно простых умозаключений инвестор может отдать предпочтение как портфелю
В общем случае решение проблемы выбора портфеля на основе логического анализа взаимозависимых параметров активов не представляется возможным. Например, задача выбора наилучшего из двух портфелей
1.4. Математическое ожидание и среднее квадратическое отклонение доходности портфеля активов
С целью снижения инвестиционного риска инвесторы распределяют капитал, как правило, между несколькими видами ценных бумаг, т.е. формируют портфель активов.
Следует отметить, что поскольку текущие курсы ценных бумаг являются случайными величинами, то и текущие стоимость и доходность портфеля активов также случайны. Из теории вероятностей известно следующее свойство композиции (суммы) случайных величин: при композиции достаточно большого числа случайных величин с произвольными плотностями распределения суммарная плотность распределения результирующей случайной величины оказывается сколь угодно близка к нормальной вне зависимости от того, каковы были плотности распределения слагаемых [2]. При композиции двух или более случайных величин с нормальными плотностями распределения результирующая случайная величина всегда имеет нормальную плотность распределения [2]. Причём