где и – относительные объёмы инвестирования в безрисковый и рискованный активы соответственно; и – доходность и
Поскольку в данном случае ,
После простых преобразований находим
Анализ соотношения (1.14) показывает, что зависимость
Рис. 1.2. Достижимое множество портфелей, содержащих безрисковый и рискованный активы
Условия и ограничивают прямую линию отрезком прямой, который пересекает ось ординат в точке, соответствующей портфелю (, , , ), и завершается точкой, соответствующей портфелю (, , , ).
Таким образом, достижимое множество портфелей, содержащих безрисковый и рискованный активы, имеет вид отрезка прямой линии, соединяющей точки и , соответствующие безрисковому активу и рискованному активу. При этом конкретное расположение портфеля на отрезке прямой зависит от соотношения относительных объёмов инвестирования в безрисковый и рискованный активы.
где и – относительные объёмы инвестирования в активы и соответственно; и –
Учитывая, что , из формулы (1.15) получаем соотношения для расчёта относительных объёмов инвестирования в активы и
После преобразований соотношений (1.15) и (1.16) получаем уравнение гиперболы вида
где – координата вершины гиперболы по оси ординат
– длина действительной полуоси гиперболы или координата вершины гиперболы по оси абсцисс ;
– длина мнимой полуоси гиперболы.
В качестве примера на рис. 1.3 представлены достижимые множества портфелей, содержащих два рискованных актива и , для коэффициентов корреляции , и .
Рис. 1.3. Достижимые множества портфелей, содержащих два рискованных актива и , для коэффициентов корреляции , и (зависимости 1, 2 и 3 соответственно)
Условия и ограничивают гиперболу точками, которые соответствуют портфелям с одним активом (, , , ) или (, , , ).
Анализ рис. 1.3 показывает, что достижимое множество портфелей, содержащих два рискованных актива, при располагается на дуге гиперболы (кривая 1) и при – на дуге гиперболы (кривая 2).
Портфели, соответствующие вершинам гипербол и , обладают минимально возможными значениями
В частном случае, когда активы и представляют собой совокупности ценных бумаг одного и того же эмитента, но приобретённых по разной цене (по этой причине активы отличаются
и достижимое множество вырождается в отрезок прямой (на рис. 1.3 прямая 3). Уравнение отрезка прямой имеет вид
где – тангенс угла наклона прямой; – свободный член линейной зависимости.
Координаты вершины гиперболы и соответствующие объёмы инвестирования в активы и можно определить и методом выделения экстремума функции с использованием частных производных.
Принимая во внимание, что , преобразуем выражение для
Для определения минимального значения
В результате решения данного уравнения получаем соотношения для расчёта объёмов инвестирования в активы и , при которых достигается минимальное значение
После подстановки выражений (1.18) и (1.19) для и в соотношения (1.15) и (1.16) получаем формулы для расчёта минимального значения
Таким образом, два рискованных актива и порождают достижимое множество портфелей, которое в графической интерпретации располагается на дуге гиперболы , где точка является вершиной гиперболы.