В первом приближении можно считать стационарными и процессы с относительно медленным изменением параметров плотности распределения случайной величины. Такие процессы называют квазистационарными. Замена квазистационарного процесса на стационарный позволяет исследовать инвестиционные качества активов методами теории вероятностей без привлечения излишне сложного математического аппарата.
Необходимо отметить, что: «
Согласно соотношению (1.1) доходность актива является линейной функцией нормально распределённой случайной величины . Поэтому линейно зависимая случайная величина также имеет нормальное распределение [2] с
где – математическое ожидание цены (курса) актива; – математическое ожидание капитальной доходности актива; – дивидендная доходность актива; – среднее квадратическое отклонение доходности актива.
В портфельной теории математическое ожидание доходности инвестиций является аналогом понятий «ожидаемая доходность» и «средняя доходность» [1].
Из теории вероятностей известно, что
Среднее квадратическое отклонение характеризует изменчивость (устойчивость) дохода инвестора относительно математического ожидания . Активы с называют рискованными [1, 5, 6]. Все корпоративные ценные бумаги являются рискованными, так как имеют неустойчивую доходность и обладают риском неуплаты.
При доходность актива детерминирована и равна , то есть точно известна и абсолютно устойчива. В [1, 5, 6] такие активы называют безрисковыми, к ним относят казначейские ценные бумаги (например, еврооблигации, векселя и долгосрочные облигации) со сроком погашения, совпадающим с периодом владения. Более подробно понятие безрискового актива раскрыто в [1].
1.2. Чистая приведенная стоимость и внутренняя ставка доходности дивидендного портфеля акций
Анализ колебаний курсов акций показывает, что текущая стоимость акции может быть, как ниже, так и выше среднего значения. Данное обстоятельство свидетельствует о том, что ряд инвесторов вполне осознанно приобретают акции с заведомо отрицательным
Оценка целесообразности портфельных инвестиций в акции осуществляется с использованием метода дисконтирования дивидендов по двум показателям [1]:
чистая приведенная стоимость акции или портфеля акций (
внутренняя ставка доходности акции или портфеля акций (
здесь – истинная или внутренняя стоимость акции; – уровень ожидаемых выплат дивидендов в момент времени ; – ставка дисконтирования, которая в данной формуле принята постоянной в течение всего времени владения акцией.
Для определения чистой приведенной стоимости дивидендного портфеля акций в формуле (1.4) под значениями и следует понимать соответственно затраты на приобретение и уровень ожидаемых выплат дивидендов применительно к портфелю в целом.
Считается, что при ставке дисконтирования, равной среднерыночной ставке капитализации (т.е. ), курс акции колеблется около истинной стоимости. Однако истинная стоимость акции не постоянна, как правило, не совпадает с текущим курсом акции, который определяется случайным соотношением спроса и предложения на фондовом рынке. Большинство институциональных инвесторов прогнозируют прибыль и дивиденды в расчёте на фискальный год и ежеквартально эти показатели пересматривают. Если за 12 месяцев не выявляют значительных изменений, истинная стоимость вычисляется в расчёте на год [7].