Действительно, пусть формула
Вместе с тем ясно, почему теоремы чистой логики обычно выводят из-под юрисдикции общего правила, согласно которому постулирование общезначимости (выполнимости) какой-либо логической формулы равносильно утверждению о числе элементов в универсуме речи. Если бы доказуемые формулы чистой логики были общезначимы лишь в собственном универсуме, чистая логика потеряла бы всякий теоретический интерес. То, что тавтологии могут добавляться в любую теорию в качестве общезначимых формул, не порождая противоречий, объясняется именно их неспособностью различать индивидуальные объекты теорий. В одноэлементном мире, как это я уже заметил однажды, отношения тождества и различия сами неразличимы{146}
.Конечно, если некоторую формулу
Вообще, если формула только
Итак, просуммирую некоторые следствия из сказанного.
1. Собственный универсум элементарной логики существует как гносеологическое понятие — как результат абстракции неразличимости элементов любой наперед заданной онтологической области индивидов. Поэтому я и называю его
2. Все теоремы элементарной логики общезначимы в ее “собственном универсуме” (тривиальное следствие метатеоремы о полноте).
3. Не каждая формула, общезначимая в собственном универсуме чистой элементарной логики, выводима из аксиом этой логики (неполнота в узком смысле).
4. Каждое расширение чистой первопорядковой логики присоединением формул, общезначимых в собственной области, непротиворечиво (следствие доказательства непротиворечивости).
5. Противоречивость теорий (появление парадоксов), основанных на элементарной логике, возможна, в частности, при игнорировании интервалов абстракции отождествления (или неразличимости) за счет формул, необщезначимых в собственной области.
Обычно, говоря о тождестве или различии, для суждения о различии индивидов мы руководствуемся скрытой посылкой о наличии различающих предикатов. Контрапозиция этой посылки говорит о том, что мы “слепнем” без таких предикатов, и подобной слепотой отличаются все тавтологии чистой логики. Выразительные возможности логической теории тождества заметно богаче тех, что предлагает нам семантика общезначимых истин, а ценность этой теории — в ее приложимости к миру фактических истин, где суждения о тождестве и различии индивидов не являются тавтологичными.
Все сказанное может показаться тривиальным. И все же замечу, что интервальная аргументация, использующая представления “внутри” и “снаружи”, позволяет яснее понять отношение чистой формальной логики к онтологии, отделить лингвистические аспекты этого отношения от собственно модельных и гносеологических и нередко избежать явных недоразумений там, где возникают противоречивые ситуации при совершении тех или иных актов отождествлений. А этим, в частности, решается и философская задача — показать, что “онтология гносеологична”, и сделать “онтологические предпосылки... как можно более осмысленными”{147}
.В.Л.Васюков О не-фрегевской аргументации
1. Логика и аргументация