Понятно однако, что с потерей онтологии терялась проблема истинности в ее содержательном понимании, характерном, к примеру, для естествознания. Что это значило для логики легко понять, если согласиться с мнением Фреге, считавшего познание законов истинности основной проблемой логики. Вернуть эту проблему для логики на ранних этапах ее развития помог интуиционизм, для которого постановка этой проблемы необходимо связана с существованием внешнего мира. Правда, определение истинности варьирует согласно философской точке зрения, но оно неизменно предполагает некоторую концепцию реальности; и здесь, замечает А.Гейтинг, мы приходим к тому, что логика для ее истолкования нуждается в онтологии{138}
.Похоже, что сегодня мы избавлены от прошлых “неопределенностей роста”. Общие вопросы онтологии перешли в ведомство философской логики и, следовательно, остались предметом для философских дискуссий. А что касается универсума речи (или предметной области), то он, сделавшись неотъемлемой частью теории моделей, приобрел вполне определенные черты. Теперь он занимает почетное место в (предикатной) сигнатуре той или иной модели (реальности), о которой идет речь, и в этом смысле (характером заданных предикатов и аксиом) вполне избавлен от неопределенности, на которую указывал Шрёдер, даже если на природу универсума не накладывается никаких конструктивных ограничений.
Тем не менее существенно, что универсумы моделей, о которых идет речь в теории моделей и которые служат для определения истинности формул логического языка, сами-то, вообще говоря, лежат вне чистой логики. Это именно та внешняя реальность, которая подразумевалась в приведенном выше замечании Гейтинга. При этом естественно возникает вопрос: а есть ли у чистой логики “собственный универсум”? Является ли эта логика сама по себе онтологической теорией или же это чисто гносеологический (неонтологический) феномен?
Говоря о “чистой логике”, я имею в виду элементарную логику (то есть чистую первопорядковую логику предикатов с равенством) не только потому, что она лежит в основе изучения всех основных математических теорий, которые формализуются в языках первой ступени, но прежде всего потому, что с непротиворечивостью именно узкого исчисления предикатов естественно связывается понятие о собственном универсуме.
Если иметь в виду понятие об универсуме (о предметной области) вообще, то необходимость в его точной характеризации возникает в связи с необходимостью введения понятия модели при семантической интерпретации первопорядкового языка. А до этого момента считается вполне достаточным (чтобы оправдать dictum de omni) постулат о непустоте универсума речи, который в этом случае мыслится совершенно неопределенным. Как замечает Дж.Шенфилд, это, в сущности, только соглашение, оно является чисто “
Вопрос об “интересных случаях” — это вопрос особый. Возможно, что логика с пустым универсумом тоже случай интересный{140}
. И случай с одноэлементным универсумом для меня тоже случай интересный. Его-то я и собираюсь обсудить ниже.Для начала замечу, что, ограничиваясь чистой логикой, мы должны признать очевидный факт — реальная онтология вносится в процедуру интерпретации извне, а не является частью самого первопорядкового языка, у которого по существу нет “внутренней семантики”. Если же мы хотим иметь нетривиальную онтологию самой логики как проекцию логического языка, мы должны расширить язык таким образом, чтобы он содержал индивидные символы и индивидуальные предикаты, определяющие и различающие элементы универсума, то есть характеризующие самый этот универсум. Когда это делается, вместо чистой логики мы получаем прикладную.
Все проблемы философской онтологии и логической семантики, включая логические парадоксы и так называемые проблемы “существования” и “онтологической относительности”, ставятся и решаются в прикладной логике. Это очень важное обстоятельство, о чем я еще скажу ниже.
Казалось бы, что и проблему непротиворечивости чистой первопорядковой логики тоже стоит отнести сюда, то есть поставить непротиворечивость в зависимость от числа и характера индивидов универсума. Мы знаем, однако, что проблема непротиворечивости чистой логики первого порядка решается, так сказать, на пропозициональном уровне.
Впрочем, как отмечают знаменитые авторы, значение этого доказательства непротиворечивости не следует переоценивать, поскольку оно “