Чтобы ответить на этот вопрос, как и на те, что были поставлены выше, полезно вспомнить способ рассуждения, который применил А.Эйнштейн, привлекая на помощь двух наблюдателей: одного в вагоне поезда, другого — рядом с полотном железной дороги{142}
. Тогда мы поймем, что как не существует траектории самой по себе, так равным образом не существует и универсума самого по себе, если мы хотим говорить об универсуме, создаваемом языком теории.Все известные мне до сих пор разговоры о логической онтологии — это разговоры с позиции наблюдателя у полотна железной дороги, с позиции “извне”. Я же предлагаю встать на позицию того, кто находится в вагоне поезда, на позицию “внутри”. Применительно к нашему случаю такой наблюдатель располагает только тавтологиями логического языка. Эти формулы чистой логики сами по себе ничего не говорят о числе (а следовательно, и о различии) объектов универсума, они безразличны
к какому-либо разнообразию. Но если их использовать как дискриминирующие признаки в актах отождествления (например, согласно обычному определению тождества), то при условии непустоты “на входе” они в любом случае дадут одноэлементный универсум “на выходе”. Именно этот универсум, возникающий как результат абстракции отождествления по тавтологичным признакам, я и называю собственным универсумом чистой логики.О том, что я не сегодня пришел к понятию о собственном универсуме чистой логики, говорит следующий текст: “...если условие А
— тавтология, то в подразумеваемой предметной области все предметы тождественны в интервале А. Иначе говоря, тавтологии не могут служить критерием различимости объектов, они как бы проектируют универсум в точку, производя абстракцию отождествления элементов множества любой мощности, “превращая” разные элементы в “один и тот же” абстрактный объект”{143}.Хотя такая трактовка онтологического статуса чистой элементарной логики не совпадает с общепринятой, согласно которой “из общих логических аксиом ничего не вытекает относительно того, какие предметы и сколько их существует в том поле..., к которому относятся наши высказывания и предикаты
”{144}, я считаю, что понятие о собственном универсуме чистой элементарной логики полезно и сродни тем, что всегда появляются, когда необходимо завершить обобщение уже существующих понятий. Так мы говорим, что бесконечно большая величина xn имеет пределом + , хотя на самом деле она не имеет никакого предела. Но + не пустое понятие. У него, как равным образом и у понятия отрицательной бесконечности, есть ясный конечный геометрический образ на окружности фон Неймана. В результате введения этих двух “несобственных” символов реализуется “догма об окружности” — “крайности сходятся” и создается наглядный образ замкнутости (совершенства) множества вещественных чисел. Известно, что по понятиям древних окружность — самая совершенная фигура. И не случайно, ведь она имеет известную связь с теоремой Пифагора — основной теоремой евклидовской геометрии.Конечно, тавтологии не пригодны в качестве “приборов анализаторов” предметных областей. Но они вполне могут служить в качестве “приборов преобразователей” предметных областей любой природы{145}
. И они это делают, ipso facto избавляя нас от противоречий в результате их применения. Вот почему непротиворечивость чистого исчисления предикатов, установленную на одноэлементной области, я считаю достаточной и установленной абсолютно. В качестве следствия я полагаю, что чистая логика не несет и не может нести ответственность за противоречия (парадоксы), возникающие при расширении ее лексики. При любом таком расширении мы видим гораздо больше, чем собственный универсум логики, поскольку используем для отождествлений и различений уже индивидуальные предикаты. Следовательно, мы находимся в условиях другого интервала абстракции отождествления, чем тот, который дают тавтологии.Потому-то, кстати, и нельзя построить контрпример для тавтологии. Приступая к построению (поиску) контрпримера, мы становимся на позицию наблюдателя у полотна железной дороги, мы предполагаем заведомое существование источника, из которого в ходе оценки формул мы черпаем необходимые нам определенные и вполне различимые элементы. Мы испытываем формулу, чтобы выяснить, способна ли она различать предметы. И если обнаруживаем, что нет, то объявляем ее тавтологией.