Читаем Теория катастроф полностью

Пример 3. Колчаном называется набор точек и соединяющих их стрелок. Если каждой точке сопоставлено линейное пространство (точка, прямая, плоскость,...), а каждой стрелке — линейное отображение (соответствующего началу стрелки пространства в соответствующее концу), то говорят, что задано представление колчана. Два представления называются эквивалентными, если одно переходит в другое при подходящих линейных преобразованиях пространств.

Колчан на рис. 82 слева прост, справа непрост (см. пример 1).

Рис. 82. Простой и непростой колчаны

Оказывается, все связные простые колчаны получаются произвольной расстановкой стрелок на изображенных на рис. 83 диаграммах Дынкина, образующих две бесконечные серии и три исключительные диаграммы.

Простые особенности каустик и волновых фронтов также образуют две бесконечные серии Аk и Dk и три исключительные особенности Еk (начальные члены серий изображены на рис. 34 — 45).

Рис. 83. Диаграммы Дынкина, определяющие простые колчаны

Группы симметрий правильных многогранников в трехмерном пространстве также образуют две бесконечные серии и три исключения (исключения — группы симметрий тетраэдра (Е6), октаэдра (Е7) и икосаэдра (Е8), серии — группы правильного многоугольника и правильного диэдра, т. е. двустороннего многоугольника с окрашенными в разные или одинаковые цвета гранями).

На первый взгляд, функции, колчаны, каустики, фронты и правильные многогранники не связаны между собой. На самом деле соответственные объекты не случайно обозначены одинаково: например, из икосаэдра можно построить функцию х2 + у3 + z5, а из нее — диаграмму Е8, а также каустику и волновой фронт того же имени.

Легко проверяемым свойствам одного из соответствующих друг другу объектов соответствуют не обязательно очевидные свойства других. Таким образом, связи между всеми А, D, Е-классификациями используются для одновременного изучения всех простых объектов, несмотря на то, что происхождение многих из них (например, связей между функциями и колчанами) остается необъясненным проявлением загадочного единства всего сущего.

По словам поэта:

Мир создан купно. Целостность егоНе устает показывать планета —И вот в глаза бросается родствоТо тут, то там сияющего света.Наверно, есть какое-то ядро,Откуда свет расходится повсюду:И в зрелый свет сентябрьских щедрот,И в нашей жизни трепетное чудо.

Описание в терминах теории особенностей было найдено в 1983 г. для всех групп Кокстера, порожденных отражениями в евклидовых пространствах, включая некристаллографические, вроде Н3 и Н4.

Группы Вk, Сk и F4 связаны с краевыми особенностями функций (1978). Катастрофисты, кажется, все ещkkе не заметили связей теории краевых особенностей с простейшими (и важнейшими) случаями так называемой теории несовершенных бифуркаций. Более сложные случаи последней связаны с теорией Горюнова проектирований полных пересечений, которая является далеким обобщением теории краевых особенностей. В теории Горюнова, в частности, исключительная группа F4 оказывается родоначальником целого семейства особенностей Fk, k ≥ 4.

Геометрическая интерпретация каустики F4 найдена И. Г. Щербак. Рассмотрим поверхность с краем в обычном трехмерном евклидовом пространстве. Каустика поверхности с краем состоит из трех поверхностей: фокального множества исходной поверхности (образованного ее центрами кривизны), фокального множества граничной кривой (являющегося огибающей семейства нормальных плоскостей) и поверхности, составленной из нормалей к исходной поверхности в граничных точках. Для поверхностей с краем общего положения в отдельных точках край касается направления главной кривизны. В окрестности фокальной точки на нормали к поверхности, проведенной в такой точке края, каустика поверхности локально диффеоморфна каустике группы F4 (рис. 84).

Н3, группа симметрий икосаэдра, связана с перестройками эвольвент плоской кривой вблизи ее точки перегиба. В соответствующей плоской задаче об обходе препятствий график многозначной функции времени диффеоморфен многообразию нерегулярных орбит группы Н3; он диффеоморфен также объединению касательных к кривой х = t, у = t3, z = (О. В. Ляшко, О. П. Щербак). В задаче об обходе препятствия в трехмерном пространстве то же многообразие описывает особенность фронта в некоторых точках на поверхности препятствия.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Пираты. Рассказы о знаменитых разбойниках
Пираты. Рассказы о знаменитых разбойниках

Эта увлекательная книга, посвященная истории морского пиратства, уникальна широтой охвата темы: в ней рассказано о датских, норманнских, испанских, вест-индских, малайских, алжирских и многих других жестоких и беспощадных морских разбойниках, наводивших страх на моряков и мирный торговый люд в разных районах Мирового океана. Повествования о жизни флибустьеров, дополненные материалами судебных процессов, отчетами адмиралтейства, рассказами несчастных, попавших в руки пиратов, о страданиях и злоключениях, которые им пришлось пережить, позволят узнать много интересного всем, кто интересуется захватывающими историями о людях, плававших под черным флагом много лет назад.

Чарльз Элмс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература