Читаем Теория катастроф полностью

Arnold V. I. Wave Fronts Evolution and Equivariant Morse Lemma // Comm. Pure Appl. Math. — 1976. — V. 29. — P. 557 — 582.

Закалюкин В. М. Перестройки волновых фронтов, зависящих от одного параметра // Функцион. анализ и его прил. — 1976. — Т. 10, вып. 2. — С. 69 — 70.

Закалюкин В. М. Лежандровы отображения в гамильтоновых системах. — М.: МАИ, 1977. — С. 11 — 16.

Подробное изложение имеется в диссертации В. М. Закалюкина (М.: МГУ, 1978. — 145 с.), см. также:

Закалюкин В. М. Перестройка фронтов и каустик, зависящих от параметра, и версальность отображений // Современные проблемы математики. — М.: ВИНИТИ:, 1983. — Т. 22. — С. 56 — 93. — (Итоги науки и техники.)

Изображения перестроек каустик впервые появились в первом русском варианте настоящей книги:

Арнольд В. И. Теория катастроф // Природа. — 1979. — № 10. — С. 54 — 63.

Во французском переводе Ш. — М. Кантора (Matematica. — 1980, May. — P. 3 — 20) эти изображения были заменены страницей комментариев Р. Тома.

Теория бикаустик изложена в:

Арнольд В. И. Перестройки особенностей потенциальных потоков бесстолкновительной среды и метаморфозы каустик в трехмерном пространстве // Тр. семинара им. И. Г. Петровского. — 1982. — Т. 8. — С. 21 — 57.

Результаты о бифуркациях были анонсированы на семинаре им. И. Г. Петровского осенью 1980 г. (см.: Успехи мат. наук. — 1981. — Т. 36, вып. 4. — С. 233), а изображения бикаустик впервые появились в 1981 г. в первом издании настоящей книги. Некоторые из этих поверхностей изучались в работах Щербака и Гафни и дю Плессиса 1 82 г. (в теории Щербака — в качестве объединений касательных к пространственным кривым).

Классификация особенностей каустик и волновых фронтов до размерности 10 проведена в статье:

Закалюкин В. М. Лагранжевы и лежандровы особенности // Функцион. анализ и его прил. — 1976. — Т. 10, вып. 1. — С. 26 — 36

и исправлена в § 21 книги:

Арнольд В. И., Варченко А. Н., Гусейн-Заде С. М. Особенности дифференцируемых отображений. I. Классификация критических точен, каустик и волновых фронтов. — М.: Наука, 1982. — 304 с.

Работа о движении льда:

Nуе J. F., Thorndike A. S. Events in evolving three-dimensional vector fields // J. Phys. A. — 1980. — V. 13. — P. 1 — 14.

<p><emphasis><strong>К разделу 9</strong></emphasis></p>

Lifshitz E. M., Halatnikоv I. M. Investigations in relativists cosmology // Adv. Phys. — 1963. — V. 12. — P. 185.

Zeldovich Ya. B. Gravitational instability: an approximate theory for large density perturbations // Astron. Astrophys. — 1970. — V. 5. — P. 84 — 89.

Arnоld V. I., Shandarin S. F., Zeldоviсh Ya. B. The Large Scale Structure of the Universe. I. General Properties. One and Two-Dimensional Models// Geophys. Astrophys. Fluid Dvn. — 1182. — V. 20. — P. 111 — 130.

Арнольд В. И. Перестройки особенностей потенциальных потоков бесстолкновительной среды и метаморфозы каустик в трехмерном пространстве // Тр. семинара им. И. Г. Петровского. — 1982. — Т. 8. — С. 21 — 57.

Аrnоld V. I. Some Algebro-Geometrical Aspects of the Newton Attraction Theory // Arithmetic and Geometry. II. Geometry / Boston: Birkbauser. 1983. — P. 1 — 3. Progress in Math: V. 36.

Шандарин С. Ф. Теория перколяции и ячеистая структура Вселенной. — Препринт / ИПМ им. М. В. Келдыша. — М., 1982. — № 137. — С. 1 — 15.

<p><emphasis><strong>К разделу 10</strong></emphasis></p>

Брызгалова Л. Н. Особенности максимума функции, зависящей от параметра // Функцион. анализ и его прил. — 1977. — Т. 11, вып. 1. — С. 59 — 60.

Врызгалова Л. Н. Функция максимума семейства функций, зависящих от параметров // Функцион. анализ и его прил. — 1978. — Т. 12, вып. 1. — С. 66 — 67.

Васильев В. А. Асимптотика экспоненциальных интегралов, диаграммы Ньютона и классификация точек минимума // Функцион. анализ и его прил. — 1977. — Т. И, вып. 3. — С. 1 — 11.

Матов В. И. Топологическая классификация ростков функций максимума и минимакса семейств функций- общего положения // Успехи мат. наук. — 1982. — Т. 37, выи. 4. — С. 129 — 130.

Матов В. И. Области эллиптичности семейств однородных многочленов и функции экстремума // Функцион. анализ и его прил. — 1985. — Т. 19, вып. 2. — С. 26 — 36.

Богаевский И. А. Перестройки особенностей функций минимума и бифуркации ударных волн уравнения Бюргерса с исчезающей вязкостью // Алгебра и анализ. — 1989. — Т. 1, № 4. — С. 1 — 16.

<p><emphasis><strong>К разделу 11</strong></emphasis></p>

Классификация Давыдова построена в его диссертации:

Давыдов Л. А. Особенности в двумерных управляемых системах (М.: МГУ, 1982. — 149 c.).

Результаты частично анонсированы в:

Давыдов А. А. Особенности границы достижимости в двумерных управляемых системах // Успехи мат. наук — 1982 — Т. 37, вып. 3. — С. 183 — 184.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература