Читаем Теория катастроф полностью

Горюнов В. В. Проектирования и векторные поля, касающиеся дискриминанта полного пересечения // Функцион. анализ и его прил. — 1988. — Т. 22, вып. 2. — С. 26 — 37.

<p><emphasis><strong>К разделу 13</strong></emphasis></p>

Арнольд В. И. Критические точки функций на многообразии с краем, простые группы Ли Вk, Сk, F4 и особенности эволют // Успехи мат. наук. — 1978. — Т. 33, вып. 5. — С. 91 — 105.

Платонова О. А. Особенности в задаче о скорейшем обходе препятствия // Функцион. анализ и его прил. — 1981. — Т 15 вып. 2. — С. 86 — 87.

Платонова О. А. Особенности системы лучей вблизи препятствия. — Москва, 1981.150 с. — Деп. ВИНИТИ 11.02.81. — № 647 — 81.

Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 55. — (Итоги науки и техники).

<p><emphasis><strong>К разделу 14</strong></emphasis></p>

Теория лагранжевых особенностей основана в 1966 г. См.:

Арнольд В. И. О характеристическом классе, входящем в условия квантования // Функцион. анализ и его прил. — 1967. — Т. 1, вып. 1. — С. 1 — 14.

Hormander L. Fourier integral operators, I // Acta Math. — 1971. — V. 127. — P. 79 — 183.

Арнольд В. И. Интегралы быстро осциллирующих функций и особенности проекций лагранжевых многообразий // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 3. — С. 61 — 62.

Арнольд В. И. Нормальные формы функций вблизи вырожденных критических точек, группы Вейля Аk, Dk, Еk и лагранжевы особенности // Функцион. анализ и его прил. — 1972. — Т. 6, вып. 4. — С. 3 — 25.

См. также:

Guckenheimer J. Catastrophes and partial differential equations // Ann. Inst. Fourier. — 1973. — V. 23, № 2. — P. 31 — 59.

Теория лежандровых особенностей впервые появилась в книге:

Арнольд В. И. Математические методы классической механики. — М.: Наука, 1974. — 432 c.

и в докладе:

Arnold V. I. Gritical points of smooth functions // Proo. of the International Congress of Mathematicians (Vancouver 1974). — Canadian Mathematical Congress. — 1975. — V. 1. — P. 19 — 39.

См. также:

Sewell M. J. On Legendre transformations and elementary catastrophes // Math. Proc. Cambr. Philos. Soc. 1977. — V. 82. — P. 147 — 163.

Dubois J. G., Dufоur J. P. La theorie des catastrophes, V. Transformee de Legendre et thermodynamique // Ann. Inst. Henri Poincare, Nouv. Ser. Sect. A. 1978. — V. 29. — P. 1 — 50.

О раскрытом ласточкином хвосте см.:

Арнольд В. И. Лагранжевы многообразия с особенностями, асимптотические лучи и раскрытый ласточкин хвост // Функцион. анализ и его прил. — 1981. — Т. 15, вып. 4. — С. 1 — 14.

Arnold V. I. Singularities of Legendre varieties, of evolvents and of fronts at an obstacle // Ergodic Theory Dyn. Syst. — V. 2. — P. 301 — 309.

Гивенталь А. Б. Лагранжевы многообразия с особенностями и неприводимые sl(2)-модули // Успехи мат. наук. — 1983. — Т. 38, вып. 6. — С. 109 — 110.

Гивенталь А. Б. Многообразия многочленов, имеющих корень фиксированной кократности, и обобщенное уравнение Ньютона // Функцион. анализ и его прил. — 1982. -Т. 16, вып. 1. — С. 13 — 18.

Теоремы Гивенталя о подмногообразиях симплектического и контактного пространства впервые появились в первом издании этой книжки, в 1981 г. Они обобщают теорему Дарбу — Вейнстейна (разница состоит в том, что в теоремах Гивенталя структуры ограничиваются лишь на касательные к подмногообразию векторы). Теорема Дарбу — Вейнстейна доказана в статье:

Weinstein A. Lagrangian submanifolds and hamiltonian Systems // Ann. Math., II Ser. — 1973. — V. 98. — P. 373 — 410.

О подмногообразиях симплектических и контактных пространств см. также:

Арнольд В. И., Гивенталь А. Б. Симплектическая геометрия // Современные проблемы математики, Фундаментальные направления. — М.: ВИНИТИ; 1985. — Т. 4. — С. 5 — 139. — (Итоги науки и техники.)

Арнольд В. И. Особенности в вариационном исчислении // Современные проблемы математики. — М.: ВИНИТИ, 1983. — Т. 22. — С. 3 — 5. — (Итоги науки и техники.)

Melrose R. B. Equivalence of glancing hypersurfaces // Invent. Math. — 1976. — V. 37. — P. 165 — 191.

Melrose R. B. Equivalence of glancing hypersurfaces, II // Math. Ann. 1981. — V. 255. — P. 159 — 198.

Martinet J. Sur les singularites des formes differentielles // Ann. Inst. Fourier. — 1970. — V. 20, № 1. — P. 95-178.

Roussarie R. Modeles locaux de champs et de formes // Asterisque.- 1975. — V. 30.

Golubitsky M., Tischler D. An example of moduli for singular simplectic forms // Invent. Math. — 1977. — V. 38. P. 219 — 225.

Гивенталь А. Б. Особые лагранжевы многообразия и их лагранжевы отображения // Современные проблемы математики. — М.: ВИНИТИ; 1988. — Т. 83. — С. 55 — 112. — (Итоги науки и техники.)

Арнольд В. И. О поверхностях, определяемых гиперболическими уравнениями // Мат. заметки. — 1988. — Т. 44, вып. 1.

Перейти на страницу:

Похожие книги

Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература