Читаем Теория струн и скрытые измерения Вселенной полностью

Существование данной структуры, установленное Канделасом и его сотрудниками, позволило получить формулу, необходимую для дальнейшей работы. Эта формула была проверена при помощи большого числа математических вычислений для полиномов со степенями от одного до четырех. О первых трех задачах уже шла речь ранее, а для кривых четвертого порядка решение было получено в 1995 году математиком Максимом Концевичем (в настоящее время работает в Институте высших научных исследований) — он получил число 242 467 530 000. Хотя формула, полученная группой Канделаса, полностью согласовывалась со всеми известными данными, вопрос о строгом доказательстве все еще был открыт. Многие математики, включая Концевича, предприняли немало усилий для представления уравнений Канделаса в форме полноценной гипотезы — в основном, за счет определения слагаемых, входящих в уравнения. Полученное в результате утверждение, известное как гипотеза о зеркальной симметрии, уже можно было подвергнуть окончательной проверке — математическому доказательству. Доказательство гипотезы о зеркальной симметрии стало обоснованием идеи зеркальной симметрии самой по себе.

Здесь я вынужден упомянуть одну из конфликтных ситуаций, которые время от времени возникают в математике. Как мне кажется, подобные ситуации неизбежны, поскольку мы живем в несовершенном мире, населенном несовершенными существами, а математика, несмотря на устоявшееся мнение о ней, совсем не является чистой интеллектуальной деятельностью, огражденной от политики, честолюбия, конкуренции и эмоций. Часто оказывается, что в подобных вопросах чем мельче причина для спора, тем большие она вызывает разногласия.

Мы с моими коллегами занимались исследованием гипотезы о зеркальной симметрии и ее обобщениями с 1991 года — со времени объявления Канделасом своих результатов. В статье, выложенной на сайт arXiv.org в марте 1996 года, Александр Гивенталь из Калифорнийского университета заявил, что ему удалось доказать гипотезу о зеркальной симметрии. Мы тщательно проработали эту статью и сочли ее — и в этом мы были не одиноки — крайне неясной. В том же году я лично пригласил моего коллегу из Массачусетского технологического института, считавшегося экспертом в этой области (который пожелал, чтобы его имя в этой книге осталось неназванным), прочитать на моем семинаре лекцию, посвященную доказательству Гивенталя. Он вежливо отказался, упомянув о своих серьезных сомнениях в убедительности аргументов, приведенных в статье. Точно так же и мне с моими коллегами не удалось шаг за шагом воспроизвести доказательство Гивенталя, несмотря на все наши попытки связаться с ним и соединить воедино те фрагменты, которые нам казались наиболее запутанными. Тогда мы приняли решение оставить эти бесплодные усилия и год спустя опубликовали наше собственное доказательство гипотезы о зеркальной симметрии.

Некоторые эксперты, в том числе Газман, назвали нашу статью «первым полным и строгим доказательством» гипотезы, аргументируя это тем, что доказательство Гивенталя «было весьма тяжелым для понимания, а в ряде мест — неполным»[108]. Дэвид Кокс, математик из колледжа Амхерст, являвшийся соавтором (вместе с Кацом) книги «Зеркальная симметрия и алгебраическая геометрия», также заявил о том, что мы представили «первое полное доказательство гипотезы».[109] С другой стороны, многие придерживались иного мнения, утверждая, что доказательство Гивенталя, опубликованное за год до нашего, было абсолютно полным и не содержало в себе каких-либо серьезных пробелов. Оставляя другим возможность продолжать дискуссию по этому поводу, сам я полагаю наилучшим объявить, что эти две статьи, сведенные вместе, представляют собой доказательство гипотезы о зеркальной симметрии, и оставить этот вопрос. Дальнейшее продолжение спора не имеет смысла, особенно в свете того, что в математике все еще полно нерешенных проблем, являющихся куда более достойным объектом для приложения усилий.

Итак, отбросив противоречия, зададимся вопросом: что же доказывают эти две статьи? Прежде всего, доказательство гипотезы о зеркальной симметрии подтвердило правильность формулы Канделаса для числа кривых определенного порядка. Но на самом деле наше доказательство было шире. Формула Канделаса была применима для подсчета числа кривых только на трехмерной поверхности пятого порядка, тогда как наши доказательства можно было использовать для гораздо более широкого класса многообразий Калаби-Яу, в том числе и для тех многообразий, к которым проявляют интерес физики, а также для других объектов, таких как векторные расслоения, о которых пойдет речь в девятой главе. Более того, наше обобщение позволяло использовать гипотезу о зеркальной симметрии не только для подсчета кривых, но и для получения других геометрических характеристик.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука