Согласно гипотезе SYZ, ключ к пониманию зеркальной симметрии лежит в подмногообразиях пространств Калаби-Яу и в способе их организации. Вы, наверное, помните приведенное ранее сравнение поверхности, содержащей в себе множество подповерхностей или подмногообразий, с куском швейцарского сыра. Подмногообразия в данном случае являются не участками поверхности, а отдельными объектами с размерностью меньше размерности многообразия, представляющими собой отдельные дырки в «сыре», каждую из которых можно по отдельности покрыть чем-либо или пропустить что-либо сквозь нее. Точно так же, согласно гипотезе SYZ, и подмногообразия в пространствах Калаби-Яу обернуты D-бранами. Не хотелось бы вносить в дальнейший рассказ путаницу, но не могу не упомянуть, что существует и другое мнение, согласно которому D-браны сами являются подмногообразиями, а не просто их «упаковками». Физики предпочитают рассуждать в терминах бран, тогда как математикам удобнее пользоваться собственной терминологией. Подпространства такого типа, удовлетворяющие условию суперсимметрии, носят название
Рассмотрим в качестве примера простейшее из возможных пространств Калаби-Яу — двухмерный тор, или бублик. В роли лагранжева подмногообразия в данном случае будет выступать одномерное пространство — объект, представляющий собой петлю, пропущенную через дырку бублика. Поскольку длина петли должна быть минимальна, петля должна точно совпадать с наименьшей из окружностей, проходящих через дырку, — варианты с петлями произвольного размера, а также с волнистыми и искривленными петлями не подходят. «Все многообразие Калаби-Яу в этом случае представляет собой объединение окружностей, — объясняет Марк Гросс, человек, сделавший больше всех остальных для развития гипотезы SYZ с того момента, как она была сформулирована. — Пусть существует некое вспомогательное пространство, назовем его
Если добавить еще одно комплексное измерение, перейдя таким образом от двух вещественных измерений к четырем, многообразие Калаби-Яу превратится в K3-поверхность. Подмногообразия, в свою очередь, в этом случае являются уже не окружностями, а двухмерными торами, соединенными в единое целое в рамках многообразия. «Изобразить четырехмерное пространство мне не под силу, — говорит Гросс. — Но я могу описать пространство
Добавим еще одно комплексное измерение, превратив рассматриваемое многообразие в трехмерное многообразие Калаби-Яу. Пространство