Главная трудность в решении задач на очень мелких масштабах связана с принципом неопределенности Гейзенберга, который делает невозможной локализацию отдельной точки или точную фиксацию расстояния между двумя точками. Поэтому объекты планковского размера не стоят на месте, а постоянно колеблются, изменяя свои параметры, включая местоположение, размер и кривизну. Если классическая геометрия говорит нам, что две плоскости пересекаются по линии, а три плоскости пересекаются в точке, то с квантовой точки зрения мы должны представить себе три плоскости, пересекающиеся в окрестности некоей сферы, которая охватывает область возможных положений для этой точки.
Для исследования Вселенной на уровне скрытых измерений или отдельных струн нам необходим новый вид геометрии, иногда называемой
«Мы всегда ищем области, в которых наука оказывается бессильной, — объясняет физик Амстердамского университета Роберт Дикграаф. — Геометрия тесно связана с теорией Эйнштейна, и когда теория Эйнштейна испытывает потрясения, то геометрию ждет та же судьба. В конечном счете, уравнения Эйнштейна необходимо заменить так же, как они в свое время заменили уравнения Ньютона, и геометрия пойдет тем же путем».[281]
Но не будем перекладывать всю ответственность на геометрию, потому что проблема в большей степени связана с физикой, чем с математикой. Прежде всего, планковский масштаб, где начинаются все вышеупомянутые неприятности, вообще не является математической концепцией.
Это
В общей теории относительности метрика, или функция, длины говорит нам о кривизне в каждой точке. На очень малых масштабах длины метрические коэффициенты колеблются в широких пределах, а это означает, что длина и кривизна также будут сильно колебаться. Другими словами, геометрия будет испытывать такие сильные сдвиги, что вряд ли будет иметь смысл называть ее геометрией. Это похоже на железнодорожную систему, где рельсы могут уменьшаться, удлиняться и искривляться как угодно, — такая железная дорога никогда не доставила бы вас к месту назначения или вы прибыли бы туда не по расписанию. Как говорится, это не для железной дороги и не для геометрии.
Как и многие другие проблемы, которых мы коснулись в этой книге, эти геометрические странности вытекают из фундаментальной несовместимости квантовой механики и общей теории относительности. Квантовую геометрию можно рассматривать как язык квантовой гравитации (математический формализм, необходимый для решения проблемы совместимости), какой бы эта теория не оказалась. Существует еще один способ рассмотрения данной проблемы физиками: геометрия сама по себе может быть явлением скорее «производным», чем фундаментальным. Если эта точка зрения верна, то она может объяснить, почему традиционные геометрические описания мира дают сбои в областях, которые отличаются малыми размерами и очень высокими энергиями.